【題目】如果三角形的兩個內(nèi)角∠α與∠β滿足2α+β=90°,那么,我們將這樣的三角形稱為“準互余三角形”.在△ABC中,已知∠C=90°,BC=3,AC=4(如圖所示),點D在AC邊上,聯(lián)結(jié)BD.如果△ABD為“準互余三角形”,那么線段AD的長為_____(寫出一個答案即可).
【答案】或
【解析】
作DM⊥AB于M.設(shè)∠ABD=α,∠A=β.分兩種情形:①當2α+β=90°時.②當α+2β=90°時,分別求解即可.
解:過點D作DM⊥AB于M.設(shè)∠ABD=α,∠A=β.
①當2α+β=90°時,∵α+β+∠DBC=90°,
∴∠DBC=∠DBA,
∵DM⊥AB,DC⊥BC,
∴DM=DC,
∵∠DMB=∠C=90°,DM=DC,BD=BD,
∴Rt△BDC≌Rt△BDM(HL),
∴BM=BC=3,
∵∠C=90°,BC=3,AC=4,
∴AB==5,
∴AM=5﹣3=2,設(shè)AD=x,則CD=DM=4﹣x,
在Rt△ADM中,則有x2=(4﹣x)2+22,
解得x=.
∴AD=.
②當α+2β=90°時,∵α+β+∠DBC=90°,
∴∠DBC=β=∠A,
∵∠C=∠C,
∴△CBD∽△CAB,
∴BC2=CDCA,
∴CD=,
∴AD=AC﹣CD=4﹣=.
故答案為:或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△DEF均為等腰直角三角形,AB=2,DE=1,E、B、F、C在同一條直線上,開始時點B與點F重合,讓△DEF沿直線BC向右移動,最后點C與點E重合,設(shè)兩三角形重合面積為y,點F移動的距離為x,則y關(guān)于x的大致圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天,小戰(zhàn)和同學(xué)們一起到操場測量學(xué)校旗桿高度,他們首先在斜坡底部C地測得旗桿頂部A的仰角為45°,然后上到斜坡頂部D點處再測得旗桿頂部A點仰角為37°(身高忽略不計).已知斜坡CD坡度i=1:2.4,坡長為2.6米,旗桿AB所在旗臺高度EF為1.4米,旗臺底部、臺階底部、操場在同一水平面上.則請問旗桿自身高度AB為( )米.
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
A.10.2B.9.8C.11.2D.10.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅旗連鎖超市準備購進甲、乙兩種綠色袋裝食品.甲、乙兩種綠色袋裝食品的進價和售價如表.已知:用2000元購進甲種袋裝食品的數(shù)量與用1600元購進乙種袋裝食品的數(shù)量相同.
甲 | 乙 | |
進價(元/袋) | ||
售價(元/袋) | 20 | 13 |
(1)求的值;
(2)要使購進的甲、乙兩種綠色袋裝食品共800袋的總利潤(利潤=售價-進價)不少于4800元,且不超過4900元,問該超市有幾種進貨方案?
(3)在(2)的條件下,該超市如果對甲種袋裝食品每袋優(yōu)惠元出售,乙種袋裝食品價格不變.那么該超市要獲得最大利潤應(yīng)如何進貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)市政府關(guān)于“垃圾不落地,市區(qū)更美麗”的主題宣傳活動,某校隨機調(diào)查了部分學(xué)生對垃圾分類知識的了解情況,對該校部分學(xué)生進行了問卷調(diào)查,并將調(diào)查結(jié)果分為四類(其中類表示“非常了解”,類表示“比較了解”,類表示“基本了解”,類表示“不太了解”).根據(jù)調(diào)查結(jié)果得到如下不完整的統(tǒng)計表和統(tǒng)計圖.請解答下列問題:
了解程度 | 人數(shù)(人) | 所占百分比 |
, .
補全條形統(tǒng)計圖;
若該校共有學(xué)生人,估計該校對垃圾分類知識“非常了解”的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,菱形ABCD的對角線交于點O,AC=2BD,點P是AO上一個動點,過點P作AC的垂線交菱形的邊于M,N兩點.設(shè)AP=x,△OMN的面積為y, 表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則菱形的周長為
A. 2 B. C. 4 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的半圓O交AC于點D,且點D為AC的中點,DE⊥BC于點E,AE交半圓O于點F,BF的延長線交DE于點G.
(1)求證:DE為半圓O的切線;
(2)若GE=1,BF=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有邊長為a的正方形卡片①,邊長為b的正方形卡片②,兩鄰邊長分別為a,b的矩形卡片③若干張.
(1)請用2張卡片①,1張卡片②,3張卡片③拼成一個矩形,在方框中畫出這個矩形的草圖;
(2)請結(jié)合拼圖前后面積之間的關(guān)系寫出一個等式;
(3)小明想用類似方法解釋多項式乘法(a+3b)(2a+2b)的結(jié)果,那么需用卡片①______張,卡片②______張,卡片③______張.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com