【題目】彩虹服裝店用元購(gòu)進(jìn)件襯衣,很快全部售完.服裝店老板以每件元的價(jià)格為標(biāo)準(zhǔn),將超出的記為正數(shù),不足的記為負(fù)數(shù),記錄如下:,,,,,,,(單位:元).他賣完這件襯衣后是盈利還是虧損?盈利(或虧損)了多少錢?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月23日是世界讀書日,某校為了營(yíng)造讀書好、好讀書、讀好書的書香校園,決定采購(gòu)《簡(jiǎn)·愛》、《小詞大雅》兩種圖書供學(xué)生閱讀,通過了解,購(gòu)買2本《簡(jiǎn)·愛》和3本《小詞大雅》共需168元,購(gòu)買3本《簡(jiǎn)·愛》和2本《小詞大雅》共需172元.
(1)求一本《簡(jiǎn)·愛》和《小詞大雅》的價(jià)格分別是多少元;
(2)若該校計(jì)劃購(gòu)買兩種圖書共300本,其中《簡(jiǎn)·愛》的數(shù)量不多于《小詞大雅》數(shù)量,且不少于100件.購(gòu)買《簡(jiǎn)·愛》m本,求總費(fèi)用W元與m之間的函數(shù)關(guān)系式,并寫出m的取值范圍;
(3)在(2)的條件下,學(xué)校在團(tuán)購(gòu)書籍時(shí),商家店鋪中《簡(jiǎn)·愛》正進(jìn)行書籍促銷活動(dòng),每本書箱降價(jià)a元(0< a <8),求學(xué)校購(gòu)書的的最低總費(fèi)用W1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】州教育局為了解我州八年級(jí)學(xué)生參加社會(huì)實(shí)踐活動(dòng)情況,隨機(jī)抽查了某縣部分八年級(jí)學(xué)生第一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)檢測(cè)了兩幅統(tǒng)計(jì)圖,下面給出了兩幅不完整的統(tǒng)計(jì)圖(如圖)
請(qǐng)根據(jù)圖中提供的信息,回答下列問題:
(1)a= %,并寫出該扇形所對(duì)圓心角的度數(shù)為 ,請(qǐng)補(bǔ)全條形圖.
(2)在這次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?
(3)如果該縣共有八年級(jí)學(xué)生2000人,請(qǐng)你估計(jì)“活動(dòng)時(shí)間不少于7天”的學(xué)生人數(shù)大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
【答案】(1)b=﹣2a,頂點(diǎn)D的坐標(biāo)為(﹣,﹣);(2);(3) 2≤t<.
【解析】試題分析:(1)把M點(diǎn)坐標(biāo)代入拋物線解析式可得到b與a的關(guān)系,可用a表示出拋物線解析式,化為頂點(diǎn)式可求得其頂點(diǎn)D的坐標(biāo);
(2)把點(diǎn)代入直線解析式可先求得m的值,聯(lián)立直線與拋物線解析式,消去y,可得到關(guān)于x的一元二次方程,可求得另一交點(diǎn)N的坐標(biāo),根據(jù)a<b,判斷a<0,確定D、M、N的位置,畫圖1,根據(jù)面積和可得的面積即可;
(3)先根據(jù)a的值確定拋物線的解析式,畫出圖2,先聯(lián)立方程組可求得當(dāng)GH與拋物線只有一個(gè)公共點(diǎn)時(shí),t的值,再確定當(dāng)線段一個(gè)端點(diǎn)在拋物線上時(shí),t的值,可得:線段GH與拋物線有兩個(gè)不同的公共點(diǎn)時(shí)t的取值范圍.
試題解析:(1)∵拋物線有一個(gè)公共點(diǎn)M(1,0),
∴a+a+b=0,即b=2a,
∴拋物線頂點(diǎn)D的坐標(biāo)為
(2)∵直線y=2x+m經(jīng)過點(diǎn)M(1,0),
∴0=2×1+m,解得m=2,
∴y=2x2,
則
得
∴(x1)(ax+2a2)=0,
解得x=1或
∴N點(diǎn)坐標(biāo)為
∵a<b,即a<2a,
∴a<0,
如圖1,設(shè)拋物線對(duì)稱軸交直線于點(diǎn)E,
∵拋物線對(duì)稱軸為
設(shè)△DMN的面積為S,
(3)當(dāng)a=1時(shí),
拋物線的解析式為:
有
解得:
∴G(1,2),
∵點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,
∴H(1,2),
設(shè)直線GH平移后的解析式為:y=2x+t,
x2x+2=2x+t,
x2x2+t=0,
△=14(t2)=0,
當(dāng)點(diǎn)H平移后落在拋物線上時(shí),坐標(biāo)為(1,0),
把(1,0)代入y=2x+t,
t=2,
∴當(dāng)線段GH與拋物線有兩個(gè)不同的公共點(diǎn),t的取值范圍是
【題型】解答題
【結(jié)束】
26
【題目】搖椅是老年人很好的休閑工具,右圖是一張搖椅放在客廳的側(cè)面示意圖,搖椅靜止時(shí),以O(shè)為圓心OA為半徑的的中點(diǎn)P著地,地面NP與相切,已知∠AOB=60°,半徑OA=60cm,靠背CD與OA的夾角∠ACD=127°,C為OA的中點(diǎn),CD=80cm,當(dāng)搖椅沿滾動(dòng)至點(diǎn)A著地時(shí)是搖椅向后的最大安全角度.
(1)靜止時(shí)靠背CD的最高點(diǎn)D離地面多高?
(2)靜止時(shí)著地點(diǎn)P至少離墻壁MN的水平距離是多少時(shí)?才能使搖椅向后至最大安全角度時(shí)點(diǎn)D不與墻壁MN相碰.
(精確到1cm,參考數(shù)據(jù)π取3.14,sin37°=0.60,cos37°=0.80,tan37°=0.75,sin67°=0.92,cos67°=0.39,tan67°=2.36, =1.41, =1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,點(diǎn)E、F、G. H分別AB、BC、 CD、 DA邊上的動(dòng)點(diǎn),且AE=BF=CG=DH
(1)求證:四邊形EFGH是平行四邊形:
(2)在點(diǎn)E、F、G、H運(yùn)動(dòng)過程中,判斷直線GE是否經(jīng)過某一定點(diǎn),如果是,請(qǐng)你在圖中畫出這個(gè)點(diǎn):如果不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A,B在反比例函數(shù)(x>0)的圖象上,它們的橫坐標(biāo)分別為m,n,且m≠n,過點(diǎn)A,點(diǎn)B都向x軸,y軸作垂線段,其中兩條垂線段的交點(diǎn)為C.
(1)如圖,當(dāng)m=2,n=6時(shí),直接寫出點(diǎn)C的坐標(biāo):
(2)若A(m,n),B(n,m).連接OA、OB、AB,求△AOB的面積:(用含m的代數(shù)式表示)
(3)設(shè)AD⊥y軸于點(diǎn)D,BE⊥x軸于點(diǎn)E.若,且,則當(dāng)點(diǎn)C在直線DE上時(shí),求p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開展了“好讀書、讀好書”的課外閱讀活動(dòng),為了解同學(xué)們的讀書情況,從全校隨機(jī)抽取了名學(xué)生,并統(tǒng)計(jì)它們平均每天的課外閱讀時(shí)間(單位:),然后利用所得數(shù)據(jù)繪制成如下不完整的統(tǒng)計(jì)圖表.
課外閱讀時(shí)間頻數(shù)分布表
課外閱讀時(shí)間 | 頻數(shù) | 百分比 |
合計(jì) |
請(qǐng)根據(jù)圖表中提供的信息回答下列問題:
(1)填空:__________,__________;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若全校有名學(xué)生,估計(jì)該校有多少名學(xué)生平均每天的課外閱讀時(shí)間不少于?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,點(diǎn)D為AB的中點(diǎn),過點(diǎn)D作DE∥BC交AC于E.
(1)求證:E為AC的中點(diǎn);
(2)如圖2,過點(diǎn)D作QD⊥AB交BC的延長(zhǎng)線于Q,過點(diǎn)E作EP⊥AC交CB的延長(zhǎng)線于P,連AP、AQ.若PQ=12,AP+AQ=20,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,坡AB的坡比為1:2.4,坡長(zhǎng)AB=130米,坡AB的高為BT.在坡AB的正面有一棟建筑物CH,點(diǎn)H、A、T在同一條地平線MN上.
(1)試問坡AB的高BT為多少米?
(2)若某人在坡AB的坡腳A處和中點(diǎn)D處,觀測(cè)到建筑物頂部C處的仰角分別為60°和30°,試求建筑物的高度CH.(精確到米, ≈1.73, ≈1.41)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com