【題目】如圖,正方形ABCD的對角線AC,BD相交于點(diǎn)O,將BD向兩個(gè)方向延長,分別至點(diǎn)E和點(diǎn)F,且使BE=DF.

(1)求證:四邊形AECF是菱形;

(2)若AC=4,BE=1,直接寫出菱形AECF的邊長.

【答案】(1)證明見解析;(2)

【解析】

(1)根據(jù)正方形的性質(zhì)和菱形的判定解答即可;

(2)根據(jù)正方形和菱形的性質(zhì)以及勾股定理解答即可.

(1)證明:∵正方形ABCD的對角線AC,BD相交于點(diǎn)O,

∴OA=OC,OB=OD,

AC⊥BD.

∵BE=DF,

∴OB+BE=OD+DF,即OE=OF.

∴四邊形AECF是平行四邊形.

∵AC⊥EF,

∴四邊形AECF是菱形.

(2)∵AC=4,

∴OA=2,

∴OB=2,

∴OE=OB+BE=3,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的邊長為6,點(diǎn)P從點(diǎn)B出發(fā)沿射線BA移動(dòng),同時(shí),點(diǎn)Q從點(diǎn)C出發(fā)沿線段AC的延長線移動(dòng),已知點(diǎn)P、Q移動(dòng)的速度相同,PQ與直線BC相交于點(diǎn)D.

1)如圖①,當(dāng)點(diǎn)PAB的中點(diǎn)時(shí),求CD的長;

2)如圖②,過點(diǎn)P作直線BC的垂線,垂足為E,當(dāng)點(diǎn)PQ在移動(dòng)的過程中,線段BEDE、CD中是否存在長度保持不變的線段?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某研究性學(xué)習(xí)小組在探究矩形的折紙問題時(shí),將一塊直角三角板的直角頂點(diǎn)繞矩形ABCD(ABBC)的對角線的交點(diǎn)O旋轉(zhuǎn)(①→②→③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點(diǎn).

(1)該學(xué)習(xí)小組成員意外的發(fā)現(xiàn)圖(三角板一邊與CC重合)BN、CN、CD這三條線段之間存在一定的數(shù)量關(guān)系:CN2BN2+CD2,請你對這名成員在圖中發(fā)現(xiàn)的結(jié)論說明理由;

(2)在圖(三角板一直角邊與OD重合),試探究圖BN、CN、CD這三條線段之間的數(shù)量關(guān)系,直接寫出你的結(jié)論.

(3)試探究圖BN、CNCM、DM這四條線段之間的數(shù)量關(guān)系,寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】陳老師為了解七班同學(xué)對新聞、體育、娛樂、動(dòng)畫四類電視節(jié)目的喜歡情況,調(diào)查了全班名同學(xué)(每名同學(xué)必選且只能選擇這四類節(jié)目中的一類),并將調(diào)查結(jié)果繪制成如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.根據(jù)兩圖提供的信息,解答下列問題:

求喜歡娛樂節(jié)目的人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

求扇形統(tǒng)計(jì)圖中喜歡體育節(jié)目的人數(shù)占全班人數(shù)的百分比和圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,公共汽車行駛在筆直的公路上,這條路上有四個(gè)站點(diǎn),每相鄰兩站之間的距離為千米,從站開往站的車稱為上行車,從站開往站的車稱為下行車.第一班上行車、下行車分別從站、站同時(shí)發(fā)車,相向而行,且以后上行車、下行車每隔分鐘分別在站同時(shí)發(fā)一班車,乘客只能到站點(diǎn)上、下車(上、下車的時(shí)間忽略不計(jì)),上行車、 下行車的速度均為千米/小時(shí).

第一班上行車到站、第一班下行車到站分別用時(shí)多少?

第一班上行車與第一班下行車發(fā)車后多少小時(shí)相距千米?

一乘客在兩站之間的處,剛好遇到上行車,千米,他從處以千米/小時(shí)的速度步行到站乘下行車前往站辦事.

①若千米,乘客從處到達(dá)站的時(shí)間最少要幾分鐘?

②若千米,乘客從處到達(dá)站的時(shí)間最少要幾分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)為原點(diǎn),為數(shù)軸上兩點(diǎn),,且

1對應(yīng)的數(shù)分別為________、________;

2)點(diǎn)、分別以個(gè)單位/秒和個(gè)單位/秒的速度相向而行,則幾秒后、相距個(gè)單位長度?

3)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿?cái)?shù)軸正方向運(yùn)動(dòng),為線段的中點(diǎn),為線段的中點(diǎn).在點(diǎn)運(yùn)動(dòng)的過程中,線段的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如 圖,△ACB△E CD都是等腰直角三角形,AC,D三點(diǎn)在同一直線上,連接BD,AE,并延長AEBDF

1)求證:△ACE≌△BCD;

2)直線AEBD互相垂直嗎?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角系xOy中,直線ABx軸正半軸于點(diǎn)A,交y軸負(fù)半軸于點(diǎn)BB點(diǎn)的坐標(biāo)為B0,﹣6),點(diǎn)C在線段OA上,將△ABC沿直線BC翻折,點(diǎn)Ay軸上的點(diǎn)D0,4),恰好重合.

1)求A點(diǎn)、C點(diǎn)的坐標(biāo);

2)在y軸是否存在一點(diǎn)H,使得△HAB和△ABC的面積相等?若存在,求出滿足條件的點(diǎn)H的坐標(biāo);若不存在,請說明理由

3)已知點(diǎn)E0,3),P是直線BC上一動(dòng)點(diǎn)(P不與B重合),連接PD、PE,求△PDE周長的最小值,并求出此BP長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(x-2)(x-3)=m2,m為實(shí)數(shù).

(1)求證:無論m為何值,方程總有兩個(gè)不相等的實(shí)數(shù)根.

(2)m為何值時(shí),方程有整數(shù)解.(直接寫出三個(gè),不需說明理由)

查看答案和解析>>

同步練習(xí)冊答案