如圖,平面上兩個正方形與正五邊形都有一條公共邊,則等于   °.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD在平面直角坐標系中,AD=6,若OA、OB的長是關于x的一元二次方程精英家教網x2-7x+12=0的兩個根,且OA>OB.
(1)則點C的坐標是
 
,點D的坐標是
 
;
(2)若將此平行四邊形ABCD沿x軸正方向向右平移3個單位,沿y軸正方向向上平移2個單位,則點C的坐標是
 
,點D的坐標是
 
;
(3)若將平行四邊形ABCD平移到第一象限后,點B的坐標是(a,b),則點C的坐標是
 
,點D的坐標是
 

(4)若點M在平面直角坐標系內,則在上圖的直線AB上,并且在第一、第二象限內是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標軸上,且精英家教網點A(0,2),點C(-1,0),如圖所示:拋物線y=2ax2+ax-
32
經過點B.
(1)寫出點B的坐標
 

(2)求拋物線的解析式;
(3)若三角板ABC從點C開始以每秒1個單位長度的速度向x軸正方向平移,求點A落在拋物線上時所用的時間,并求三角板在平移過程掃過的面積;
(4)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,直線y=-
34
x+6交x軸于點A,交y軸于點B.點P,點Q同時從原點出發(fā)作勻速運動,點P沿x軸正方向運動,點Q沿OB→BA方向運動,并同時到達點A.點P運動的速度為1厘米/秒.
(1)求點Q運動的速度;
(2)當點Q運動到線段BA上時,設點P運動的時間為x(秒),△POQ的面積為y(平方厘米),那么用x的代數(shù)式表示AQ=
 
,并求y與x的函數(shù)關系式;
(3)若將(2)中所得函數(shù)的自變量x的取值范圍擴大到任意實數(shù)后,其函數(shù)圖象上是否存在點M,使得點M與該函數(shù)圖象和x軸的兩個交點所組成的三角形面積等于△AOB的面積?若存在,求出點M的坐標;若不存在,請說明精英家教網理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•豐臺區(qū)一模)我們把函數(shù)圖象與x軸交點的橫坐標稱為這個函數(shù)的零點.如函數(shù)y=2x+1的圖象與x軸交點的坐標為(-
1
2
,0),所以該函數(shù)的零點是-
1
2

(1)函數(shù)y=x2+4x-5的零點是
-5或1
-5或1
;
(2)如圖,將邊長為1的正方形ABCD放置在平面直角坐標系xOy中,且頂點A在x軸上.若正方形ABCD沿x軸正方向滾動,即先以頂點A為中心順時針旋轉,當頂點B落在x軸上時,再以頂點B為中心順時針旋轉,如此繼續(xù).頂點D的軌跡是一函數(shù)的圖象,則該函數(shù)在其兩個相鄰零點間的圖象與x軸所圍區(qū)域的面積為
π+1
π+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在向紅星鎮(zhèn)居民介紹王家莊位置的時候,我們可以這樣說:如圖1,在以紅星鎮(zhèn)為原點,正東方向為x軸正方向,正北方向為y軸正方向的平面直角坐標系(1單位長度表示的實際距離為1km)中,王家莊的坐標為(5,5);也可以說,王家莊在紅星鎮(zhèn)東北方向
50
km的地方.

還有一種方法廣泛應用于航海、航空、氣象、軍事等領域.如圖2:在紅星鎮(zhèn)所建的雷達站O的雷達顯示屏上,把周角每15°分成一份,正東方向為0°,相鄰兩圓之間的距離為1個單位長度(1單位長度表示的實際距離為1km),現(xiàn)發(fā)現(xiàn)2個目標,我們約定用(10,15°)表示點M在雷達顯示器上的坐標,則:
(1)點N可表示為
(8,135°)
(8,135°)
;王家莊位置可表示為
50
,45°)
50
,45°)
;點N關于雷達站點0成中心對稱的點P的坐標為
(8,315°)
(8,315°)
;
(2)S△OMP=
20
2
20
2
;
(3)若有一家大型超市A在圖中(4,30°)的地方,請直接標出點A,并將超市A與雷達站O連接,現(xiàn)準備在雷達站周圍建立便民服務店B,使得△ABO為底角30°的等腰三角形,請直接寫出B點在雷達顯示屏上的坐標.
(4,270°)或(4,150°)或(4
3
,0°)或(4
3
,60°).
(4,270°)或(4,150°)或(4
3
,0°)或(4
3
,60°).

查看答案和解析>>

同步練習冊答案