【題目】二次函數(shù)(,,為常數(shù),且)中的與的部分對應值如下表:
以下結(jié)論:
①二次函數(shù)有最小值為;
②當時,隨的增大而增大;
③二次函數(shù)的圖象與軸只有一個交點;
④當時,.
其中正確的結(jié)論有( )個
A.B.C.D.
【答案】B
【解析】
根據(jù)表中數(shù)據(jù),可獲取相關(guān)信息:拋物線的頂點坐標為(1,-4),開口向上,與x軸的兩個交點坐標是(-1,0)和(3,0),據(jù)此即可得到答案.
①由表格給出的數(shù)據(jù)可知(0,-3)和(2,-3)是一對對稱點,所以拋物線的對稱軸為=1,即頂點的橫坐標為x=1,所以當x=1時,函數(shù)取得最小值-4,故此選項正確;
②由表格和①可知當x<1時,函數(shù)y隨x的增大而減少;故此選項錯誤;
③由表格和①可知頂點坐標為(1,-4),開口向上,∴二次函數(shù)的圖象與x軸有兩個交點,一個是(-1,0),另一個是(3,0);故此選項錯誤;
④函數(shù)圖象在x軸下方y<0,由表格和③可知,二次函數(shù)的圖象與x軸的兩個交點坐標是(-1,0)和(3,0),∴當時,y<0;故此選項正確;
綜上:①④兩項正確,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,邊長為2的正方形OABC的兩頂點A、C分別在y軸、x軸的正半軸上,現(xiàn)將正方形OABC繞點O順時針旋轉(zhuǎn).
(1)如圖①,當點A的對應的A′落在直線y=x上時,點A′的對應坐標為________;點B的對應點B′的坐標為_________;
(2)旋轉(zhuǎn)過程中,AB邊交直線y=x于點M,BC邊交x軸于點N,當A點第一次落在直線y=x上時,停止旋轉(zhuǎn).
①如圖2,在正方形OABC旋轉(zhuǎn)過程中,線段AM,MN,NC三者滿足什么樣的數(shù)量關(guān)系?請說明理由;
②當AC∥MN時,求△MBN內(nèi)切圓的半徑(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
材料1:在處理分數(shù)和分式問題時,有時由于分子比分母大,或者分子的次數(shù)高于分母的次數(shù),在實際運算時往往難度比較大,這時我們可以將假分數(shù)(分式)拆分成一個整數(shù)(整式)與一個真分數(shù)(式)的和(差)的形式,通過對簡單式的分析來解決問題,我們稱之為分離整數(shù)法.此法在處理分式或整除問題時頗為有效.
例:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.
解:設x+2=t,則x=t﹣2.
∴原式=
∴
這樣,分式就拆分成一個整式(x﹣5)與一個分式的和的形式.
根據(jù)以上閱讀材料回答下列問題:
(1)將分式拆分成一個整式與一個分子為整數(shù)的分式的和的形式,則結(jié)果為 ;
(2)已知分式的值為整數(shù),求整數(shù)x的值;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在Rt△ABC中,∠BAC=90°,CD為∠ACB的平分線,將∠ACB沿CD所在的直線對折,使點B落在點B′處,連結(jié)AB',BB',延長CD交BB'于點E,設∠ABC=2α(0°<α<45°).
(1)如圖1,若AB=AC,求證:CD=2BE;
(2)如圖2,若AB≠AC,試求CD與BE的數(shù)量關(guān)系(用含α的式子表示);
(3)如圖3,將(2)中的線段BC繞點C逆時針旋轉(zhuǎn)角(α+45°),得到線段FC,連結(jié)EF交BC于點O,設△COE的面積為S1,△COF的面積為S2,求(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每年5月的第二個星期日即為母親節(jié),“父母恩深重,恩憐無歇時”,許多市民喜歡在母親節(jié)為母親送花,感恩母親,祝福母親.今年節(jié)日前夕,某花店采購了一批康乃馨,經(jīng)分析上一年的銷售情況,發(fā)現(xiàn)這種康乃馨每天的銷售量y(支)是銷售單價x(元)的一次函數(shù),已知銷售單價為7元/支時,銷售量為16支;銷售單價為8元/支時,銷售量為14支.
(1)求這種康乃馨每天的銷售量y(支)關(guān)于銷售單價x(元/支)的一次函數(shù)解析式;
(2)若按去年方式銷售,已知今年這種康乃馨的進價是每支5元,商家若想每天獲得42元的利潤,銷售單價要定為多少元?
(3)在(2)的條件下,當銷售單價x為何值時,花店銷售這種康乃馨每天獲得的利潤最大?并求出獲得的最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC、BD相交于點O,點E、F分別是邊AD、AB上的點,連結(jié)OE、OF、EF.若AB=7,BC=5,∠DAB=45°,則①點C到直線AB的距離是_____.②△OEF周長的最小值是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A為反比例函數(shù)y=(其中x>0)圖象上的一點,在x軸正半軸上有一點B,OB=4.連接OA、AB,且OA=AB=2.
(1)求k的值;
(2)過點B作BC⊥OB,交反比例函數(shù)y=(x>0)的圖象于點C.
①連接AC,求△ABC的面積;
②在圖上連接OC交AB于點D,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=ax2+bx+3(a≠0)與x軸分別交于A(﹣3,0),B兩點,與y軸交于點C,拋物線的頂點E(﹣1,4),對稱軸交x軸于點F.
(1)請直接寫出這條拋物線和直線AE、直線AC的解析式;
(2)連接AC、AE、CE,判斷△ACE的形狀,并說明理由;
(3)如圖2,點D是拋物線上一動點,它的橫坐標為m,且﹣3<m<﹣1,過點D作DK⊥x軸于點K,DK分別交線段AE、AC于點G、H.在點D的運動過程中,
①DG、GH、HK這三條線段能否相等?若相等,請求出點D的坐標;若不相等,請說明理由;
②在①的條件下,判斷CG與AE的數(shù)量關(guān)系,并直接寫出結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com