【題目】已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+

(1)a=﹣1,b=﹣2時,求4A﹣(3A﹣2B)的值;

(2)若(1)中式子的值與a的取值無關,求b的值.

【答案】(1)4ab﹣2a+;(2)b=

【解析】

(1)將a=﹣1,b=﹣2代入A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+,求出A、B的值,再計算4A﹣(3A﹣2B)的值即可;(2)把(1)結果變形,根據(jù)結果與a的值無關求出b的值即可.

(1)4A﹣(3A﹣2B)

=4A﹣3A+2B

=A+2B,

A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+,

A+2B

=2a2+3ab﹣2a﹣1+2(﹣a2+ab+

=2a2+3ab﹣2a﹣1﹣2a2+ab+

=4ab﹣2a+;

(2)因為4ab﹣2a+

=(4b﹣2)a+,

又因為4ab﹣2a+的值與a的取值無關,

所以4b﹣2=0,

所以b=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,∠A=30°,點P從點A出發(fā)以2cm/s的速度沿折線A—C—B運動,點Q從點A出發(fā)以a(cm/s)的速度沿AB運動,P,Q兩點同時出發(fā),當某一點運動到點B時,兩點同時停止運動.設運動時間為x(s),△APQ的面積為y(cm2),y關于x的函數(shù)圖象由C1 , C2兩段組成,如圖2所示.

(1)求a的值;
(2)求圖2中圖象C2段的函數(shù)表達式;
(3)當點P運動到線段BC上某一段時△APQ的面積,大于當點P在線段AC上任意一點時△APQ的面積,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,從點P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次擴展下去,則P2017的坐標為( )

A.(504,﹣504)
B.(﹣504,504)
C.(﹣504,503)
D.(﹣505,504)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l上依次有三點A、B、C,且AB=8、BC=16,點P為射線AB上一動點,將線段AP進行翻折得到線段PA′(點A落在直線l上點A′處、線段AP上的所有點與線段PA′上的點對應).

(1)若翻折后A′C=2,則翻折前線段AP=  

(2)若點P在線段BC上運動,點M為線段A′C的中點,直接寫出線段PM的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,對于任意一點P(x,y),我們做以下規(guī)定:d(P)=|x|+|y|,稱d(P)為點P的坐標距離.

(1)已知:點P(3,﹣4),求點P的坐標距離d(P)的值.

(2)如圖,四邊形OABC為正方形,且點A、B在第一象限,點C在第四象限.

①求證:d(A)=d(C).

②若OC=2,且滿足d(A)+d(C)=d(B)+2,求點B坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算
(1)
(2)(x+1)2=64
(3)
(4)
(5)
(6)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片中,cm,cm。點邊上,將沿折疊,得,連接, .

(1)當點落在邊上時,

(2)當點的中點時,求的長;

(3)分別滿足下列條件時,求相應的的長:

.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學習有理數(shù)的乘法后,老師給同學們這樣一道題目:計算:49×(﹣5),看誰算的又快又對,有兩位同學的解法如下:

小明:原式=﹣×5=﹣=﹣249;

小軍:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;

(1)對于以上兩種解法,你認為誰的解法較好?

(2)上面的解法對你有何啟發(fā),你認為還有更好的方法嗎?如果有,請把它寫出來;

(3)用你認為最合適的方法計算:19×(﹣8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①是一個直角三角形紙片,∠A=30°,將其折疊,使點C落在斜邊上的點C處,折痕為BD,如圖②,再將②沿DE折疊,使點A落在DC′的延長線上的點A′處,如圖③,若折痕DE的長是cm,則BC的長是( 。

A. 3cm B. 4cm C. 5cm D. 6cm

查看答案和解析>>

同步練習冊答案