【題目】在平面直角坐標系中,如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的兩根分別為﹣3和1;④b2﹣4ac>0,其中正確的命題有( )
A.1個B.2個C.3個D.4個
【答案】C
【解析】
根據(jù)二次函數(shù)的圖象可知拋物線開口向上,對稱軸為x=﹣1,且過點(1,0),根據(jù)對稱軸可得拋物線與x軸的另一個交點為(﹣3,0),把(1,0)代入可對①做出判斷;由對稱軸為x=﹣1,可對②做出判斷;根據(jù)二次函數(shù)與一元二次方程的關(guān)系,可對③做出判斷,根據(jù)根的判別式解答即可.
由圖象可知:拋物線開口向上,對稱軸為直線x=﹣1,過(1,0)點,
把(1,0)代入y=ax2+bx+c得,a+b+c=0,因此①正確;
對稱軸為直線x=﹣1,即:﹣=﹣1,整理得,b=2a,因此②不正確;
由拋物線的對稱性,可知拋物線與x軸的兩個交點為(1,0)(﹣3,0),因此方程ax2+bx+c=0的兩根分別為﹣3和1;故③是正確的;
由圖可得,拋物線有兩個交點,所以b2﹣4ac>0,故④正確;
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子里有1個紅球,1個黃球和n個白球,它們除顏色外其余都相同.
(1)從這個袋子里摸出一個球,記錄其顏色,然后放回,搖均勻后,重復(fù)該實驗,經(jīng)過大量實驗后,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定于0.5左右,求n的值;
(2)在(1)的條件下,先從這個袋中摸出一個球,記錄其顏色,放回,搖均勻后,再從袋中摸出一個球,記錄其顏色.請用畫樹狀圖或者列表的方法,求出先后兩次摸出不同顏色的兩個球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點,,把拋物線在軸及其上方的部分記作,將向右平移得,與軸交于點,,若直線與,共有個不同的交點,則的取值范圍是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA=AB,∠OAB=90°,反比例函數(shù)y=(x>0)的圖象經(jīng)過A,B兩點.若點A的坐標為(n,1),則 k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點P,過點B的直線交OP的延長線于點C,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為,OP=1,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向終點B以1cm/s的速度移動,點Q從點B開始沿BC邊向終點C以2cm/s的速度移動,當其中一點到達終點時,另一點隨之停止.點P,Q分別從點A,B同時出發(fā).
(1)求出發(fā)多少秒時PQ的長度等于5cm;
(2)出發(fā) 秒時,△BPQ中有一個角與∠A相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,BE平分∠ABC,CF平分∠BCD,E、F在AD上,BE與CF相交于點G,若AB=7,BC=10,則△EFG與△BCG的面積之比為( )
A.4:25B.49:100C.7:10D.2:5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=65°,BC=6,以BC為直徑的半圓O與AB、AC分別交于點D、E,則圖中由O、D、E三點所圍成的扇形面積等于_____.(結(jié)果保留π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com