【題目】解方程:
(1)(x+1)2=1
(2)x2﹣6x+4=0.

【答案】
(1)解:∵(x+1)2=1,

∴x+1=1或x+1=﹣1,

解得:x=0或x=﹣2


(2)解:∵x2﹣6x=﹣4,

∴x2﹣6x+9=﹣4+9,即(x﹣3)2=5,

∴x﹣3=± ,

則x=3±


【解析】(1)直接開平方法求解可得;(2)將常數(shù)項(xiàng)已知等式的右邊,再在等式的兩邊都配上一次項(xiàng)系數(shù)一半的平方,利用配方法求解可得.
【考點(diǎn)精析】本題主要考查了直接開平方法和配方法的相關(guān)知識點(diǎn),需要掌握方程沒有一次項(xiàng),直接開方最理想.如果缺少常數(shù)項(xiàng),因式分解沒商量.b、c相等都為零,等根是零不要忘.b、c同時(shí)不為零,因式分解或配方,也可直接套公式,因題而異擇良方;左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒問題.左邊分解右合并,直接開方去解題才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是一塊綠化帶,將陰影部分修建為花圃,已知AB=15,AC=9,BC=12,陰影部分是△ABC的內(nèi)切圓,一只自由飛翔的小鳥將隨機(jī)落在這塊綠化帶上,則小鳥落在花圃上的概率為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,蓄電池的電壓為定值,使用此電源時(shí),用電器的電流I(A)與電阻R(Ω)成反比例.已知電阻R=7.5Ω時(shí),電流I=2A.
(1)求確定I與R之間的函數(shù)關(guān)系式并說明此蓄電池的電壓是多少;
(2)若以此蓄電池為電源的用電器額定電流不能超過5A,則該電路中電阻的電阻值應(yīng)滿足什么條件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=x2﹣4x的圖象與x軸、直線y=x的一個(gè)交點(diǎn)分別為點(diǎn)A,B,CD是線段OB上的一動線段,且CD=2,過點(diǎn)C,D的兩直線都平行于y軸,與拋物線相交于點(diǎn)F,E,連接EF.
(1)點(diǎn)A的坐標(biāo)為 , 線段OB的長=;
(2)設(shè)點(diǎn)C的橫坐標(biāo)為m ①當(dāng)四邊形CDEF是平行四邊形時(shí),求m的值;
②連接AC、AD,求m為何值時(shí),△ACD的周長最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)F,點(diǎn)E在BD上,且 = =
(1)試問:∠BAE與∠CAD相等嗎?為什么?
(2)試判斷△ABE與△ACD是否相似?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)一種商品,每件商品進(jìn)價(jià)30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:

x

30

32

34

36

y

40

36

32

28


(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價(jià)應(yīng)定為多少元?
(3)設(shè)該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價(jià)定為多少元時(shí)利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題: A、B兩地的距離是80公里,一輛公共汽車從A地駛出3小時(shí)后,一輛小汽車也從A地出發(fā),它的速度是公共汽車的3倍,已知小汽車比公共汽車遲20分鐘到達(dá)B地,求兩車的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在周長為12的菱形ABCD中,AE=1,AF=2,若P為對角線BD上一動點(diǎn),則EP+FP的最小值為( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B、C是圓O上的三點(diǎn),且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點(diǎn)F,則∠BAF等于(
A.12.5°
B.15°
C.20°
D.22.5°

查看答案和解析>>

同步練習(xí)冊答案