問題背景:
若矩形的周長為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長為x,面積為s,則s與x的函數(shù)關(guān)系式為:s=-x2+
1
2
x
(x>0),利用函數(shù)的圖象或通過配方均可求得該函數(shù)的最大值.
提出新問題:
若矩形的面積為1,則該矩形的周長有無最大值或最小值?若有,最大(。┲凳嵌嗌伲
分析問題:
若設(shè)該矩形的一邊長為x,周長為y,則y與x的函數(shù)關(guān)系式為:y=2(x+
1
x
)
(x>0),問題就轉(zhuǎn)化為研究該函數(shù)的最大(。┲盗耍
解決問題:
借鑒我們已有的研究函數(shù)的經(jīng)驗(yàn),探索函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲担
(1)實(shí)踐操作:填寫下表,并用描點(diǎn)法畫出函數(shù)y=2(x+
1
x
)
(x>0)的圖象:
x1/41/31/21234
y
17
2
20
3
545
20
3
17
2
(2)觀察猜想:觀察該函數(shù)的圖象,猜想當(dāng)x=______時(shí),函數(shù)y=2(x+
1
x
)
(x>0)有最______值(填“大”或“小”),是______.
(3)推理論證:問題背景中提到,通過配方可求二次函數(shù)s=-x2+
1
2
x
(x>0)的最大值,請(qǐng)你嘗試通過配方求函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲,以證明你的猜想.〔提示:當(dāng)x>0時(shí),x=(
x
)2
(1)當(dāng)x=
1
4
時(shí),y=2×(
1
4
+4)=
17
2
,
當(dāng)x=
1
3
時(shí),y=2×(
1
3
+3)=
20
3
,
當(dāng)x=
1
2
時(shí),y=2×(
1
2
+2)=5,
當(dāng)x=1時(shí),y=2×(1+1)=4,
當(dāng)x=2時(shí),y=2×(2+
1
2
)=5,
當(dāng)x=3時(shí),y=2×(3+
1
3
)=
20
3
,
當(dāng)x=4時(shí),y=2×(4+
1
4
)=
17
2

函數(shù)圖象如右圖:

(2)由(1)的計(jì)算結(jié)果和函數(shù)圖象知:當(dāng)x=1時(shí),y=2(x+
1
x
)有最小值,且最小值為4.

(3)證明:∵x>0,且x=(
x
2
∴y=2(x+
1
x
)=2[(
x
2-2+(
1
x
2]+4=2(
x
-
1
x
2+4;
∴當(dāng)
x
=
1
x
,即x=1時(shí),函數(shù)y=2(x+
1
x
)有最小值,且最小值為4.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在同一坐標(biāo)系內(nèi),二次函數(shù)的圖象與兩坐標(biāo)軸分別交于點(diǎn)A(-1,0),點(diǎn)B(2,0)和點(diǎn)C(0,4),一次函數(shù)的圖象與拋物線交于B,C兩點(diǎn).
(1)二次函數(shù)的解析式為______;
(2)當(dāng)自變量x______時(shí),兩函數(shù)的函數(shù)值都隨x增大而減。
(3)當(dāng)自變量x______時(shí),一次函數(shù)值大于二次函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象如圖所示.
(1)求二次函數(shù)的解析式及拋物線頂點(diǎn)M的坐標(biāo);
(2)若點(diǎn)N為線段BM上的一點(diǎn),過點(diǎn)N作x軸的垂線,垂足為點(diǎn)Q.當(dāng)點(diǎn)N在線段BM上運(yùn)動(dòng)時(shí)(點(diǎn)N不與點(diǎn)B,點(diǎn)M重合),設(shè)NQ的長為t,四邊形NQAC的面積為s,求s與t之間的函數(shù)關(guān)系式及自變量t的取值范圍;
(3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使△PAC為直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(4)將△OAC補(bǔ)成矩形,使上△OAC的兩個(gè)頂點(diǎn)成為矩形一邊的兩個(gè)頂點(diǎn),第三個(gè)頂點(diǎn)落在矩形這一邊的對(duì)邊上,試直接寫出矩形的未知的頂點(diǎn)坐標(biāo)(不需要計(jì)算過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=a(x+2)2+c與x軸交于A、B兩點(diǎn),與y軸負(fù)半軸交于點(diǎn)C,已知點(diǎn)A(-1,0),OB=OC.
(1)求此拋物線的解析式;
(2)若點(diǎn)M是拋物線上一個(gè)動(dòng)點(diǎn),且S△BCM=S△ABC,求點(diǎn)M的坐標(biāo);
(3)Q為直線y=-x-4上一點(diǎn),在此拋物線的對(duì)稱軸是否存在一點(diǎn)P,使得∠APB=2∠AQB,且這樣的Q點(diǎn)有且只有一個(gè)?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx-2經(jīng)過(2,1)和(6,-5)兩點(diǎn).
(1)求拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C點(diǎn),點(diǎn)P是在直線x=4右側(cè)的此拋物線上一點(diǎn),過點(diǎn)P作PM⊥x軸,垂足為M.若以A、P、M為頂點(diǎn)的三角形與△OCB相似,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)E是直線BC上的一點(diǎn),點(diǎn)F是平面內(nèi)的一點(diǎn),若要使以點(diǎn)O、B、E、F為頂點(diǎn)的四邊形是菱形,請(qǐng)直接寫出點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線與x軸交于A(-1,0)、E(3,0)兩點(diǎn),與y軸交于點(diǎn)B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點(diǎn)為D,求四邊形AEDB的面積;
(3)△AOB與△DBE是否相似?如果相似,請(qǐng)給以證明;如果不相似,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點(diǎn).
(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā).沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向終點(diǎn)D運(yùn)動(dòng).速度均為每秒1個(gè)單位長度,運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
①過點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.當(dāng)t為何值時(shí),線段EG最長?
②連接EQ.在點(diǎn)P、Q運(yùn)動(dòng)的過程中,判斷有幾個(gè)時(shí)刻使得△CEQ是等腰三角形?請(qǐng)直接寫出相應(yīng)的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某瓜果基地市場部為指導(dǎo)該基地種植某蔬菜的生產(chǎn)和銷售,在對(duì)歷年市場行情和生產(chǎn)情況進(jìn)行調(diào)查的基礎(chǔ)上,對(duì)今年這種蔬菜上市后的市場售價(jià)和生產(chǎn)成本進(jìn)行預(yù)測,提供了兩個(gè)方面的信息,如圖所示,請(qǐng)你根據(jù)圖象提供的信息說明:
(1)在3月從份出售這種蔬菜,每千克的收益是多少元?
(2)哪個(gè)月出售這種蔬菜,每千克的收益最大?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2-2x+c經(jīng)過直線y=x-3與坐標(biāo)軸的兩個(gè)交點(diǎn)A、B,此拋物線與x軸的另一個(gè)交點(diǎn)為C,拋物線的頂點(diǎn)為D.
(1)求此拋物線的解析式;
(2)⊙M是過A、B、C三點(diǎn)的圓,連接MC、MB、BC,求劣弧CB的長;(結(jié)果用精確值表示)
(3)點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),求使S△APC:S△ACD=5:4的點(diǎn)P的坐標(biāo).(結(jié)果用精確值表示)

查看答案和解析>>

同步練習(xí)冊答案