如圖,一次函數(shù)的圖象與x軸、y軸分別相交于點(diǎn)A和點(diǎn)B,二次函數(shù)的圖象經(jīng)過(guò)A、B兩點(diǎn).
(1)求這個(gè)一次函數(shù)的解析式;
(2)求二次函數(shù)的解析式;
(3)如果點(diǎn)C在這個(gè)二次函數(shù)的圖象上,且點(diǎn)C的橫坐標(biāo)為5,求tan∠CAB的值.

【答案】分析:(1)根據(jù)拋物線的解析式可求出B點(diǎn)的坐標(biāo),根據(jù)B點(diǎn)的坐標(biāo)即可確定一次函數(shù)的解析式;
(2)根據(jù)(1)題所得一次函數(shù)的解析式,可求出A點(diǎn)的坐標(biāo),將其代入拋物線的解析式中,即可求出該二次函數(shù)的解析式;
(3)欲求∠CAB的正切值,需將其構(gòu)建到直角三角形中求解;過(guò)C作CH⊥AB于H,在Rt△AHC中,∠CAB的正切值等于CH、AH的比,那么關(guān)鍵是求出CH、AH的長(zhǎng);根據(jù)拋物線的解析式,可求出A、C的坐標(biāo),即可得到AB、BC、OA的長(zhǎng);易證得△CBH∽△BAO,根據(jù)相似三角形得到的比例線段,即可求出CH、BH的長(zhǎng),進(jìn)而可求出AH的長(zhǎng),由此得解.
解答:解:(1)由題意,得點(diǎn)B的坐標(biāo)為(0,6);(1分)
∴m=6;(1分)
∴一次函數(shù)的解析式為;(1分)

(2)由題意,得點(diǎn)A的坐標(biāo)為(8,0);(1分)
,
;(1分)
∴二次函數(shù)的解析式為;(1分)

(3)∵點(diǎn)C在這個(gè)二次函數(shù)的圖象上,且點(diǎn)C的橫坐標(biāo)為5,
;
∴點(diǎn)C的坐標(biāo)為(5,6);(1分)
作CH⊥AB,垂足為點(diǎn)H;(1分)
∵點(diǎn)B與點(diǎn)C的縱坐標(biāo)相等,
∴BC∥x軸;
∴∠CBH=∠BAO;(1分)
又∵∠CHB=∠BOA=90°,
∴△CHB∽△BOA,
;
∵OB=6,OA=8,
∴AB=10;
;(1分)
∴CH=3,BH=4,AH=6;(1分)
.(1分)
點(diǎn)評(píng):此題考查了函數(shù)圖象上點(diǎn)的坐標(biāo)意義,一次函數(shù)、二次函數(shù)解析式的確定,相似三角形的判定和性質(zhì)以及銳角三角函數(shù)的定義等知識(shí),綜合性較強(qiáng),難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知反比例函數(shù)y=
12x
的圖象和一次函數(shù)y=kx-7的圖象都經(jīng)過(guò)點(diǎn)P(m,2).
(1)求這個(gè)一次函數(shù)的解析式;
(2)如果等腰梯形ABCD的頂點(diǎn)A、B在這個(gè)一次函數(shù)的圖象上,頂點(diǎn)C、D在這個(gè)反比例函數(shù)的圖象上,兩底AD、BC與y軸平行,且A和B的橫坐標(biāo)分別為a、b(b>a>0),求代數(shù)式ab的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= –  ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)    求一次函數(shù)的解析式;

(2)    設(shè)函數(shù)y2=  (x>0)的圖象與y1= –  (x<0)的圖象關(guān)于y軸對(duì)稱(chēng).在y2=  (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過(guò)PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)(x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0),當(dāng)x<-1時(shí),一次函數(shù)值大于反比例函數(shù)值,當(dāng)x>-1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)求一次函數(shù)的解析式;

(2)設(shè)函數(shù)(x>0)的圖象與(x<0)的圖象關(guān)于y軸對(duì)稱(chēng),在(x>0)的圖象上取一點(diǎn)P(P點(diǎn)的橫坐標(biāo)大于2),過(guò)P點(diǎn)作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

解答:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)   求一次函數(shù)的解析式;

(2)   設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對(duì)稱(chēng).在y2= (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過(guò)PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)   求一次函數(shù)的解析式;

(2)   設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對(duì)稱(chēng).在y2= (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過(guò)PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案