【題目】如圖,方格紙中小正方形的邊長(zhǎng)為1,△ABC的三個(gè)頂點(diǎn)都在小正方形的格點(diǎn)上,求:
(1)邊AC,AB,BC的長(zhǎng);
(2)點(diǎn)C到AB邊的距離;
(3)求△ABC的面積.
【答案】(1)AC=,AB=,BC=;(2)點(diǎn)C到AB的距離是;(3)△ABC的面積是3.5.
【解析】
(1) 根據(jù)勾股定理可求出AC,AB,BC的長(zhǎng);
(3)利用正方形的面積減去三角形三個(gè)頂點(diǎn)上三角形的面積即可;
(2)先根據(jù)勾股定理求出AB的長(zhǎng),再由三角形的面積公式即可得出點(diǎn)C到AB的距離.
(1)AC==,
AB==,
BC==;
(2)S△ABC=3×3﹣×3×1﹣×2×1﹣×2×3=3.5,
設(shè)點(diǎn)C到AB邊的距離為h,則×h×AB=3.5,
解得:h=.
即點(diǎn)C到AB的距離是;
(3)由(2)可知△ABC的面積=3.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OB是∠AOC的平分線,OD是∠COE的平分線.
(1)如果∠AOC=70°,∠COE=50°,那么∠BOD是多少度?
(2)如果∠BOD=70°,那么∠AOE是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,在平面直角坐標(biāo)系中,點(diǎn) B(m,0)、A(n,0)分別是 x 軸軸上兩點(diǎn), 且滿足多項(xiàng)式(x2+mx+8)(x2-3x+n)的積中不含 x3項(xiàng)和 x2項(xiàng),點(diǎn) P(0,h)是 y 軸正半軸上的動(dòng)點(diǎn)
(1)求三角形△ABP 的面積(用含 h 的代數(shù)式表示)
(2)過(guò)點(diǎn) P 作 DP⊥PB,CP⊥PA,且 PD=PB,PC=AP
① 連接 AD、BC 相交于點(diǎn) E,再連 PE,求∠BEP 的度數(shù)
② 連 CD 與 y 軸相交于點(diǎn) Q,當(dāng)動(dòng)點(diǎn) P 在 y 軸正半軸上運(yùn)動(dòng)時(shí),線段 PQ 的長(zhǎng)度變不變?如果不變,請(qǐng)求出其值;如果變化,請(qǐng)求出其變化范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,四邊形中,,,,且,
試求:(1)的度數(shù);(2)四邊形的面積(結(jié)果保留根號(hào));
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】射線OA、OB、OC、OD、OE有公共端點(diǎn)O.
(1)若OA與OE在同一直線上(如圖1),試寫出圖中小于平角的角;
(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如圖2),求∠BOD的度數(shù);
(3)如圖3,若∠AOE=88°,∠BOD=30°,射OC繞點(diǎn)O在∠AOD內(nèi)部旋轉(zhuǎn)(不與OA、OD重合).探求:射線OC從OA轉(zhuǎn)到OD的過(guò)程中,圖中所有銳角的和的情況,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:拋物線y=ax2+bx+c交y軸于點(diǎn)C(0,4),對(duì)稱軸x=2與x軸交于點(diǎn)D,頂點(diǎn)為M,且DM=OC+OD,
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P(x,y)是第一象限內(nèi)該拋物線上的一個(gè)動(dòng)點(diǎn),△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求當(dāng)x取多少時(shí),S的值最大,最大是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y= x+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C、D分別為線段AB、OB的中點(diǎn),點(diǎn)P為OA上一動(dòng)點(diǎn),PC+PD值最小時(shí)點(diǎn)P的坐標(biāo)為( )
A.(﹣3,0)
B.(﹣6,0)
C.(﹣ ,0)
D.(﹣ ,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)D在BC上,點(diǎn)E在AB上,BD=BE,要使△ADB≌△CEB,還需添加一個(gè)條件.
(1)給出下列四個(gè)條件:①AD=CE ②AE=CD ③∠BAC=∠BCA ④∠ADB=∠CEB請(qǐng)你從中選出一個(gè)能使△ADB≌△CEB的條件,并給出證明;
你選出的條件是
證明:
(2)在(1)中所給出的條件中,能使△ADB≌△CEB的還有哪些?直接在題后橫線上寫出滿足題意的條件序號(hào):
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com