【題目】在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為、、,點(diǎn)E是的外接圓上一點(diǎn),BE交線段AC于點(diǎn)D,若,則點(diǎn)D的坐標(biāo)為______.
【答案】
【解析】
連接CE,過(guò)E作EF⊥AC于F,根據(jù)已知條件得到OA=OB=2,OC=4,得到△OBA是等腰直角三角形,得到∠BAC=45°,根據(jù)圓周角定理得到∠BEC=∠BAC=45°,推出△BCE是等腰直角三角形,求得BC=CE,根據(jù)全等三角形的性質(zhì)得到E(2,﹣4),待定系數(shù)法得到直線BE的解析式為y=﹣3x+2,于是得到結(jié)論.
連接CE,過(guò)E作EF⊥AC于F.
∵點(diǎn)A、B、C的坐標(biāo)分別為(﹣2,0)、(0,2)、(4,0),∴OA=OB=2,OC=4,∴△OBA是等腰直角三角形,∴∠BAC=45°,∴∠BEC=∠BAC=45°.
∵∠DBC=45°,∴∠BCE=90°,∴△BCE是等腰直角三角形,∴BC=CE.
∵∠CBO+∠BCO=∠BOC+∠ECF=90°,∴∠OBC=∠FCE.
在△OBC與△FCE中,∵,∴△OBC≌△FCE(AAS),∴CF=OB=2,EF=OC=4,∴OF=2,∴E(2,﹣4),設(shè)直線BE的解析式為y=kx+b,∴,∴,∴直線BE的解析式為y=﹣3x+2,當(dāng)y=0時(shí),x,∴D(,0).
故答案為:(,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DF:DC=1:4,連接EF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長(zhǎng)為10,求BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:在一次數(shù)學(xué)社團(tuán)活動(dòng)課上,同學(xué)們測(cè)量一座古塔CD的高度,他們首先在A處安置測(cè)量器,測(cè)得塔頂C的仰角∠CFE=30°,然后往塔的方向前進(jìn)100米到達(dá)B處,此時(shí)測(cè)得塔頂C的仰角∠CGE=60°,已知測(cè)量器高1.5米,請(qǐng)你根據(jù)以上數(shù)據(jù)計(jì)算出古塔CD的高度.(保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分別為AB、AC、BC邊上的中點(diǎn).若P為AB邊上的一個(gè)動(dòng)點(diǎn),PQ∥BC,且交AC于點(diǎn)Q,以PQ為一邊,在點(diǎn)A的異側(cè)作正方形PQMN,記正方形PQMN與矩形EDBF的公共部分的面積為y.
(1)如圖,當(dāng)AP=3cm時(shí),求y的值;
(2)設(shè)AP=xcm,試用含x的代數(shù)式表示y(cm2);
(3)當(dāng)y=2cm2時(shí),試確定點(diǎn)P的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是
A. 某種彩票的中獎(jiǎng)機(jī)會(huì)是則買100張這種彩票一定會(huì)中獎(jiǎng)
B. 為了解全國(guó)中學(xué)生的睡眠情況,應(yīng)該采用普查的方式
C. 一組數(shù)據(jù)3,4,5,5,5,6,10的平均數(shù)大于中位數(shù)
D. 同時(shí)拋擲兩枚均勻的硬幣,出現(xiàn)一枚正面朝上且另一枚反面朝上的概率是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說(shuō)法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種蔬菜每千克售價(jià)(元)與銷售月份之間的關(guān)系如圖1所示,每千克成本(元)與銷售月份之間的關(guān)系如圖2所示,其中圖1中的點(diǎn)在同一條線段上,圖2中的點(diǎn)在同一條拋物線上,且拋物線的最低點(diǎn)的坐標(biāo)為(6,1).
(1)求出與之間滿足的函數(shù)表達(dá)式,并直接寫(xiě)出的取值范圍;
(2)求出與之間滿足的函數(shù)表達(dá)式;
(3)設(shè)這種蔬菜每千克收益為元,試問(wèn)在哪個(gè)月份出售這種蔬菜,將取得最大值?并求出此最大值.(收益=售價(jià)-成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的角平分線,線段AD的垂直平分線分別交AB和AC于點(diǎn)E、F,連接DE、DF.
(1)試判定四邊形AEDF的形狀,并證明你的結(jié)論.
(2)若DE=13,EF=10,求AD的長(zhǎng).
(3)△ABC滿足什么條件時(shí),四邊形AEDF是正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)是(4,0),并且OA=OC=4OB,動(dòng)點(diǎn)P在過(guò)A,B,C三點(diǎn)的拋物線上.
(1)求拋物線的解析式;
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)過(guò)動(dòng)點(diǎn)P作PE垂直于y軸于點(diǎn)E,交直線AC于點(diǎn)D,過(guò)點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com