【題目】二次函數(shù)圖象的頂點(diǎn)在原點(diǎn),經(jīng)過(guò)點(diǎn)點(diǎn)在軸上,直線與軸交于點(diǎn).
(1)求二次函數(shù)的解析式;
(2)點(diǎn)是拋物線上的點(diǎn),過(guò)點(diǎn)作軸的垂線與直線交于點(diǎn),求證:;
(3)當(dāng)時(shí)等邊三角形時(shí),求點(diǎn)的坐標(biāo).
【答案】(1)y=x2(2)見(jiàn)解析(3)(2,3)或(2,3)
【解析】
(1)根據(jù)題意可設(shè)函數(shù)的解析式為y=ax2,將點(diǎn)A代入函數(shù)解析式,求出a的值,繼而可求得二次函數(shù)的解析式;
(2)過(guò)點(diǎn)P作PB⊥y軸于點(diǎn)B,利用勾股定理求出PF,表示出PM,可得PF=PM;
(3)首先可得∠FMH=30,設(shè)點(diǎn)P的坐標(biāo)為(x,x2),根據(jù)PF=PM=FM,可得關(guān)于x的方程,求出x的值即可得出答案.
(1)∵二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,
∴設(shè)二次函數(shù)的解析式為y=ax2,
將點(diǎn)代入y=ax2得:a=,
∴二次函數(shù)的解析式為y=x2;
(2)設(shè)P(m,m2),
∵F(0,1),
∴PF==m2+1,
∵PM⊥HM,且點(diǎn)M在直線y=1上,
∴PM=m2+1,
∴PF=PM;
(3)當(dāng)△FPM是等邊三角形時(shí),∠PMF=60,
∴∠FMH=30,
在Rt△MFH中,MF=2FH=2×2=4,
∵PF=PM=FM,
∴x2+1=4,
解得:x=±2,
∴x2=×12=3,
∴滿足條件的點(diǎn)P的坐標(biāo)為(2,3)或(2,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和C(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1,下列結(jié)論:①abc>0;②4a+2b+c>0;③4ac﹣b2<8a;④;⑤b<c.其中含所有正確結(jié)論的選項(xiàng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)偶數(shù)的平方差,那么稱這個(gè)正整數(shù)為“神秘?cái)?shù)”.如:,,,因此4,12,20都是“神秘?cái)?shù)”
(1)請(qǐng)說(shuō)明28是否為“神秘?cái)?shù)”;
(2)下面是兩個(gè)同學(xué)演算后的發(fā)現(xiàn),請(qǐng)選擇一個(gè)“發(fā)現(xiàn)”,判斷真假,并說(shuō)明理由.
①小能發(fā)現(xiàn):兩個(gè)連續(xù)偶數(shù)和(其中取非負(fù)整數(shù))構(gòu)造的“神秘?cái)?shù)”也是4的倍數(shù).
②小仁發(fā)現(xiàn):2016是“神秘?cái)?shù)”.
提示:(2)中兩個(gè)發(fā)現(xiàn),只需解答其中一個(gè),若兩個(gè)都做,按“小能發(fā)現(xiàn)”的解答計(jì)分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A是一次函數(shù)(x≥0)圖象上一點(diǎn),過(guò)點(diǎn)A作x軸的垂線l,B是l上一點(diǎn)(B在A上方),在AB的右側(cè)以AB為斜邊作等腰直角三角形ABC,反比例函數(shù)(x>0)的圖象過(guò)點(diǎn)B,C,若△OAB的面積為6,則△ABC的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一段拋物線:記為,它與軸交于兩點(diǎn),;將繞旋轉(zhuǎn)得到,交軸于;將繞旋轉(zhuǎn)得到,交軸于;如此進(jìn)行下去,直至得到,若點(diǎn)在第段拋物線上,則___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若動(dòng)點(diǎn)D從B出發(fā),沿線段BA運(yùn)動(dòng)到點(diǎn)A為止(不考慮D與B,A重合的情況),運(yùn)動(dòng)速度為2cm/s,過(guò)點(diǎn)D作DE∥BC交AC于點(diǎn)E,連接BE,設(shè)動(dòng)點(diǎn)D運(yùn)動(dòng)的時(shí)間為x(s),AE的長(zhǎng)為y(cm).
(1)求y關(guān)于x的函數(shù)表達(dá)式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),△BDE的面積S有最大值?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知平行四邊形ABCD頂點(diǎn)A的坐標(biāo)為(2,6),點(diǎn)B在y軸上,且AD∥BC∥x軸,過(guò)B,C,D三點(diǎn)的拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(2,2),點(diǎn)F(m,6)是線段AD上一動(dòng)點(diǎn),直線OF交BC于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)設(shè)四邊形ABEF的面積為S,請(qǐng)求出S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)如圖2,過(guò)點(diǎn)F作FM⊥x軸,垂足為M,交直線AC于P,過(guò)點(diǎn)P作PN⊥y軸,垂足為N,連接MN,直線AC分別交x軸,y軸于點(diǎn)H,G,試求線段MN的最小值,并直接寫出此時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校舉辦了學(xué)生“國(guó)學(xué)經(jīng)典大賽”,比賽項(xiàng)目為:A.唐詩(shī);B.宋詞;C.元曲;D.論語(yǔ).比賽形式分“單人組”和“雙人組”.
(1)小明參加“單人組”,他從中隨機(jī)抽取一個(gè)比賽項(xiàng)目,則抽到“唐詩(shī)”的是 事件,其概率是 ;
(2)若小亮和小麗組成一個(gè)小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊(duì)員的比賽項(xiàng)目不能相同,且每人只能隨機(jī)抽取一次,則小亮和小麗都沒(méi)有抽到“元曲”的概率是多少?請(qǐng)用畫樹狀圖或列表的方法進(jìn)行說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:梯形ABCD中,AD∥BC,E為AC的中點(diǎn),連接DE并延長(zhǎng)交BC于點(diǎn)F,連接AF.
(1)求證:AD=CF;
(2)在原有條件不變的情況下,請(qǐng)你再添加一個(gè)條件(不再增添輔助線),使四邊形AFCD成為菱形,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com