(2012•南平)如圖,在山坡AB上種樹,已知∠C=90°,∠A=28°,AC=6米,則相鄰兩樹的坡面距離AB≈
6.8
6.8
米.(精確到0.1米)
分析:利用線段AC的長和∠A的余弦弦值求得線段AB的長即可.
解答:解:AB=
AC
cos28°
6
0.88
≈6.8米,
故答案為6.8.
點評:此題主要考查學生對坡度與坡角的掌握情況及三角函數(shù)的運用.解題的關鍵是正確的利用合適的邊角關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•南平)如圖,△ABC為⊙O的內(nèi)接三角形,AB為⊙O的直徑,點D在⊙O上,∠ADC=68°,則∠BAC=
22
22
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•南平)如圖,已知四邊形ABCD是平行四邊形,若點E、F分別在邊BC、AD上,連接AE、CF,請再從下列三個備選條件中,選擇添加一個恰當?shù)臈l件.使四邊形AECF是平行四邊形,并予以證明,
備選條件:AE=CF,BE=DF,∠AEB=∠CFD,
我選擇添加的條件是:
BE=DF
BE=DF

(注意:請根據(jù)所選擇的條件在答題卡相應試題的圖中,畫出符合要求的示意圖,并加以證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•南平)如圖,直線l與⊙O交于C、D兩點,且與半徑OA垂直,垂足為H,已知OD=2,∠O=60°,
(1)求CD的長;
(2)在OD的延長線上取一點B,連接AB、AD,若AD=BD,求證:AB是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•南平)如圖,在△ABC中,點D、E分別在邊BC、AC上,連接AD、DE,且∠1=∠B=∠C.
(1)由題設條件,請寫出三個正確結論:(要求不再添加其他字母和輔助線,找結論過程中添加的字母和輔助線不能出現(xiàn)在結論中,不必證明)
答:結論一:
AB=AC
AB=AC
;
結論二:
∠AED=∠ADC
∠AED=∠ADC

結論三:
△ADE∽△ACD
△ADE∽△ACD

(2)若∠B=45°,BC=2,當點D在BC上運動時(點D不與B、C重合),
①求CE的最大值;
②若△ADE是等腰三角形,求此時BD的長.
(注意:在第(2)的求解過程中,若有運用(1)中得出的結論,須加以證明)

查看答案和解析>>

同步練習冊答案