【題目】如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達(dá)式為yx,點(diǎn)O1的坐標(biāo)為(1,0),以O1為圓心,O1O為半徑畫(huà)圓,交直線l于點(diǎn)P1,交x軸正半軸于點(diǎn)O2,以O2為圓心,O2O為半徑畫(huà)圓,交直線l于點(diǎn)P2,交x軸正半軸于點(diǎn)O3,以O3為圓心,O3O為半徑畫(huà)圓,交直線l于點(diǎn)P3,交x軸正半軸于點(diǎn)O4;…按此做法進(jìn)行下去,其中的長(zhǎng)為_____

【答案】22015π

【解析】

連接P1O1,P2O2,P3O3,易求得PnOn垂直于x軸,可知圓的周長(zhǎng),再找出圓半徑的規(guī)律即可解題.

解:連接P1O1,P2O2,P3O3,

P1 是⊙O1上的點(diǎn),

P1O1OO1,

∵直線l解析式為yx,

∴∠P1OO145°,

∴△P1OO1為等腰直角三角形,即P1O1x軸,

同理,PnOn垂直于x軸,

圓的周長(zhǎng),

∵以O1為圓心,O1O為半徑畫(huà)圓,交x軸正半軸于點(diǎn)O2,以O2為圓心,O2O為半徑畫(huà)圓,交x軸正半軸于點(diǎn)O3,以此類(lèi)推,

OO1120,OO2221,OO3422OO4823,,

OOn

,

故答案為:22015π

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1x+2的圖象與反比例函數(shù)y2k≠0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(1,m)

1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);

2)根據(jù)圖象直接寫(xiě)出當(dāng)y1y2時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形的對(duì)角線經(jīng)過(guò)原點(diǎn),與交于點(diǎn)軸于點(diǎn),點(diǎn)D的坐標(biāo)為反比例函數(shù)的圖象恰好經(jīng)過(guò)兩點(diǎn).

(1)的值及所在直線的表達(dá)式;

(2)求證:.

(3)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸的兩個(gè)交點(diǎn)分別是、,為頂點(diǎn).

1)求、的值和頂點(diǎn)的坐標(biāo);

2)在軸上是否存在點(diǎn),使得是以為斜邊的直角三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形OABC為矩形,OA=4,OC=5,正比例函數(shù)y=2x的圖像交AB于點(diǎn)D,連接DC,動(dòng)點(diǎn)QD點(diǎn)出發(fā)沿DC向終點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)PC點(diǎn)出發(fā)沿CO向終點(diǎn)O運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),速度均為每秒1個(gè)單位,設(shè)從出發(fā)起運(yùn)動(dòng)了t s

1)求點(diǎn)D的坐標(biāo);

2)若PQOD,求此時(shí)t的值?

3)是否存在時(shí)刻某個(gè)t,使SDOP=SPCQ?若存在,請(qǐng)求出t的值,若不存在,請(qǐng)說(shuō)明理由;

4)當(dāng)t為何值時(shí),DPQ是以DQ為腰的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鄂州市化工材料經(jīng)銷(xiāo)公司購(gòu)進(jìn)一種化工原料若干千克,價(jià)格為每千 克30元物價(jià)部門(mén)規(guī)定其銷(xiāo)售單價(jià)不高于每千克60元,不低于每千克30元經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):日銷(xiāo)售量y千克)是銷(xiāo)售單價(jià)x元)的一次函數(shù),且當(dāng)x=60時(shí) ,y=80;x=50時(shí),y=100在銷(xiāo)售過(guò)程中,每天還要支付其他費(fèi)用450元

1)3分)求出y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍

2)3分)求該公司銷(xiāo)售該原料日獲利w與銷(xiāo)售單價(jià)x之間的函數(shù)關(guān)系式

3)4分)當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),該公司日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】開(kāi)學(xué)初期,天氣炎熱,水杯需求量大.雙福育才中學(xué)門(mén)口某超市購(gòu)進(jìn)一批水杯,其中A種水杯進(jìn)價(jià)為每個(gè)15元,售價(jià)為每個(gè)25元;B種水杯進(jìn)價(jià)為每個(gè)12元,售價(jià)為每個(gè)20

1)該超市平均每天可售出60個(gè)A種水杯,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),A種水杯單價(jià)每降低1元,則平均每天的銷(xiāo)量可增加10個(gè).為了盡量讓學(xué)生得到更多的優(yōu)惠,某天該超市將A種水杯售價(jià)調(diào)整為每個(gè)m元,結(jié)果當(dāng)天銷(xiāo)售A種水杯獲利630元,求m的值.

2)該超市準(zhǔn)備花費(fèi)不超過(guò)1600元的資金,購(gòu)進(jìn)A、B兩種水杯共120個(gè),其中B種水杯的數(shù)量不多于A種水杯數(shù)量的兩倍.請(qǐng)為該超市設(shè)計(jì)獲利最大的進(jìn)貨方案,并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的弦,為半徑的中點(diǎn),過(guò)交弦于點(diǎn),交于點(diǎn),且

1)求證:的切線;

2)連接,求的度數(shù):

3)如果,,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(如圖 1,若拋物線 l1 的頂點(diǎn) A 在拋物線 l2 上,拋物線 l2 的頂點(diǎn) B 也在拋物線 l1 上(點(diǎn) A 與點(diǎn) B 不重合).我們稱(chēng)拋物線 l1,l2 互為友好拋物線,一條拋物線的 拋物線可以有多條.

1)如圖2,拋物線 l3 y 軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于拋物線的對(duì)稱(chēng)軸對(duì)稱(chēng),則點(diǎn) D 的坐標(biāo)為 ;

2)求以點(diǎn) D 為頂點(diǎn)的 l3 友好拋物線 l4 的表達(dá)式,并指出 l3 l4 y 同時(shí)隨x增大而增大的自變量的取值范圍;

3)若拋物線 ya1(xm)2n 的任意一條友好拋物線的表達(dá)式為 ya2(xh)2k 寫(xiě)出 a1 a2的關(guān)系式,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案