【題目】如圖1,在RtABC中,∠ACB=90°,AD平分∠BAC,過點DAC的平行線交AB于點O,DEADAB于點E.

(1)求證:點OAE的中點;

(2)若點FAC邊上一點,且OF=OA,連接EF,如圖2,判斷EFAC的位置關(guān)系,并說明理由;

(3)在(2)的條件下,試探究線段AE、AFAC之間滿足的等量關(guān)系,并說明理由

【答案】1)見解析;(2EFAC,理由見解析;(3AE+AF=2AC,理由見解析.

【解析】

1)根據(jù)直角三角形、角平分線和平行線的性質(zhì)證明∠ODA=OAD,∠OED=ODE,進而得出OD=OA,OD=OE即可解決問題;
2)結(jié)論:EFAC.先證明OF=OE=OA,再根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和是180°即可解決問題;
3)結(jié)論:AE+AF=2AC.延長EDAC的延長線于M.證明AE=AM,CM=CF即可解決問題.

證明:如圖1中,

AD平分∠BAC
∴∠CAD=BAD,
ODAC,
∴∠ODA=DAC
∴∠ODA=OAD,
OD=OA
DEAD,
∴∠ADE=90°,
∴∠EDO+ADO=90°,∠DEO+OAD=90°,
∴∠OED=ODE,
OD=OE
OE=OA,
∴點OAE的中點;
2)解:結(jié)論:EFAC
理由:如圖2中,

OF=OA,OA=OE,

OF=OE,∠OFA=OAF

∴∠OEF=OFE,

∵∠OEF+OFE+OFA+OAF=180°,

∴∠OFE+OFA=90°,即∠EFA=90°,
EFAC;
3)解:如圖3中,結(jié)論:AE+AF=2AC

理由:延長EDAC的延長線于M
ADEM,
∴∠ADM=ADE=90°,
∴∠M+DAM=90°,∠AED+DAE=90°,
∵∠DAM=DAE
∴∠M=AED,
AE=AM,
DM=DE,
∵∠DCA=EFA=90°,
DCEF,
DM=DE,
CM=CF,
AE-AF=AM-AF=FM=2CF,AC-AF=CF,
AE-AF=2AC-AF),
AE+AF=2AC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,小紅到美麗的世界地質(zhì)公園湖光巖參加社會實踐活動,在景點P處測得景點B位于南偏東45°方向;然后沿北偏東60°方向走100到達景點A,此時測得景點B正好位于景點A的正南方向,求景點AB之間的距離.(結(jié)果精確到0.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,D是弧ACB的中點,DE//BCAC的延長線于點E,AE=10,∠ACB=60°,BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx+3與坐標軸分別交于A,B兩點,拋物線yax2bx-3a經(jīng)過點A,B頂點為C,連接CB并延長交x軸于點E,D與點B關(guān)于拋物線的對稱軸MN對稱

(1)求拋物線的解析式及頂點C的坐標;

(2)求證四邊形ABCD是直角梯形

【答案】(1)y=-x2-2x+3,頂點C的坐標為(-1,4);(2)證明見解析.

【解析】

1)解:∵yx3與坐標軸分別交與A,B兩點,∴A點坐標(-30)、B點坐標(03.

拋物線yax2bx3a經(jīng)過A,B兩點,

解得

拋物線解析式為:y=-x22x3.

∵y=-x22x3=-(x124,

頂點C的坐標為(-14.

2)證明:∵B,D關(guān)于MN對稱,C(-1,4),B03),

∴D(-2,3.∵B0,3),A(-30),∴OAOB.

∠AOB90°,∴∠ABO∠BAO45°.

∵B,D關(guān)于MN對稱,∴BD⊥MN.

∵MN⊥x軸,∴BD∥x.

∴∠DBA∠BAO45°.

∴∠DBO∠DBA∠ABO45°45°90°.

設(shè)直線BC的解析式為ykxb

B0,3),C(-1,4)代入得,

解得

∴y=-x3.

y0時,-x30,x3,∴E30.

∴OBOE,又∵∠BOE90°

∴∠OEB∠OBE∠BAO45°.

∴∠ABE180°∠BAE∠BEA90°.

∴∠ABC180°∠ABE90°.

∴∠CBD∠ABC∠ABD45°.

∵CM⊥BD,∴∠MCB45°.

∵B,D關(guān)于MN對稱,

∴∠CDM∠CBD45°CD∥AB.

∵ADBC不平行,四邊形ABCD是梯形.

∵∠ABC90°四邊形ABCD是直角梯形.

型】解答
結(jié)束】
21

【題目】有兩組卡片,第一組三張卡片上都寫著AB、B,第二組五張卡片上都寫著A、BB、DE.試用列表法求出從每組卡片中各抽取一張,兩張都是B的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點,點P、Q在DC邊上,且PQ=DC.若AB=16,BC=20,則圖中陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC、BD相交于點F,點EBD上,

(1)求證:∠BAE=CAD;

(2)求證:ABE∽△ACD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,DAC中點,BE平分∠ABDAC于點E,點OAB上一點,⊙OB、E兩點,交BD于點G,交AB于點F

1)判斷直線AC⊙O的位置關(guān)系,并說明理由;

2)當BD=6AB=10時,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,O 為坐標原點,P是反比例函數(shù)圖象上任意一點,以P為圓心,PO為半徑的圓與x軸交于點 A、與y軸交于點B,連接AB

1)求證:P為線段AB的中點;

2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=x的圖象如圖所示,則方程ax2+bx+c=0(a≠0)的兩根之和

A. 大于0 B. 等于0 C. 小于0 D. 不能確定

查看答案和解析>>

同步練習(xí)冊答案