【題目】已知:在平面直角坐標(biāo)系中,拋物線(xiàn) y=ax2 -2ax+4(a<0) x 軸于點(diǎn) A、B,與 y 軸交于點(diǎn) C,AB=6

1)如圖 1,求拋物線(xiàn)的解析式;

2 如圖 2,點(diǎn) R 為第一象限的拋物線(xiàn)上一點(diǎn),分別連接 RB、RC,設(shè)RBC 的面積為 s,點(diǎn) R 的橫坐標(biāo)為 t,求 s t 的函數(shù)關(guān)系式;

3)在(2)的條件下,如圖 3,點(diǎn) D x 軸的負(fù)半軸上,點(diǎn) F y 軸的正半軸上,點(diǎn) E OB 上一點(diǎn),點(diǎn) P 為第一象限內(nèi)一點(diǎn),連接 PD、EF,PD OC 于點(diǎn) GDG=EF,PDEF,連接 PE,∠PEF=2PDE,連接 PBPC,過(guò)點(diǎn)R RTOB 于點(diǎn) T,交 PC 于點(diǎn) S,若點(diǎn) P BT 的垂直平分線(xiàn)上,OB-TS=,求點(diǎn) R 的坐標(biāo).

【答案】1;(2;(3R2,4)或R,

【解析】

1)先求出拋物線(xiàn)的對(duì)稱(chēng)軸,再根據(jù)A、B關(guān)于拋物線(xiàn)對(duì)稱(chēng)軸對(duì)稱(chēng)和AB的長(zhǎng)即可求出AB的坐標(biāo),然后代入解析式即可;

2)過(guò)點(diǎn)Rx軸的垂線(xiàn),交BC于點(diǎn)M,根據(jù)題意可得點(diǎn)R的坐標(biāo)為,點(diǎn)M的橫坐標(biāo)為t,然后求出點(diǎn)C的坐標(biāo),利用待定系數(shù)法求出直線(xiàn)BC的解析式,即可求出點(diǎn)M的坐標(biāo),最后利用“鉛垂高,水平寬”即可求出結(jié)論;

3)設(shè)PGEF交于點(diǎn)H,連接EG,設(shè)R點(diǎn)的坐標(biāo)為,則OT=t,根據(jù)題意求出點(diǎn)S的坐標(biāo),即可求出直線(xiàn)SC的解析式,然后根據(jù)全等三角形的判定及性質(zhì)、垂直平分線(xiàn)的判定、三線(xiàn)合一證出OP平分∠EOG,可得點(diǎn)P的橫縱坐標(biāo)相等,再結(jié)合已知條件即可求出點(diǎn)P的坐標(biāo),代入直線(xiàn)SC的解析式即可求出t,從而求出點(diǎn)R的坐標(biāo).

解:(1)拋物線(xiàn) y=ax2 -2ax+4(a<0)的對(duì)稱(chēng)軸為x=

AB=6A、B關(guān)于x=1對(duì)稱(chēng)

∴點(diǎn)A的橫坐標(biāo)為1=-2,點(diǎn)B的橫坐標(biāo)為1=4

∴點(diǎn)A的坐標(biāo)為(-2,0),點(diǎn)B的坐標(biāo)為(4,0

將點(diǎn)A的坐標(biāo)代入y=ax2 -2ax+4中,得

0=4a4a4

解得:a=

∴拋物線(xiàn)的解析式為

2)過(guò)點(diǎn)Rx軸的垂線(xiàn),交BC于點(diǎn)M

∵點(diǎn) R 的橫坐標(biāo)為 t

∴點(diǎn)R的坐標(biāo)為,點(diǎn)M的橫坐標(biāo)為t

x=0代入中,解得y=4

∴點(diǎn)C的坐標(biāo)為(0,4

設(shè)直線(xiàn)BC的解析式為y=kxb

將點(diǎn)B、C的坐標(biāo)代入,得

解得:

∴直線(xiàn)BC的解析式為y=-x4

∴點(diǎn)M的坐標(biāo)為(t,-t4

RM=

s=RM·(xBxC=·(40=

3)設(shè)PGEF交于點(diǎn)H,連接EG

設(shè)R點(diǎn)的坐標(biāo)為,則OT=t

OB-TS=OB=4

TS=

∴點(diǎn)S的坐標(biāo)為(t,

設(shè)直線(xiàn)SC的解析式為:y=mxn

S、C的坐標(biāo)代入,得

解得:

∴直線(xiàn)SC的解析式為

∵∠DOG=FOE=DHE=90°

∴∠ODG+∠HEO=90°,∠OFE+∠HEO=90°

∴∠ODG=OFE

DG=FE

∴△ODG≌△OFE

OG=OE,

∴點(diǎn)OGE的中垂線(xiàn)上,△OGE為等腰直角三角形

∴∠GEO=OGE=45°

∴∠PGE=GEO+∠PDE=45°+∠PDE,∠FEG=OGE-∠OFE=45°-∠PDE

∵∠PEF=2PDE

∴∠PEG=PEF+∠FEG=2PDE45°-∠PDE=45°+∠PDE

∴∠PGE=PEG

PG=PE

∴點(diǎn)PEG的中垂線(xiàn)上

OP垂直平分EG

OP平分∠EOG

∴點(diǎn)P的橫、縱坐標(biāo)相等

∵點(diǎn) P BT 的垂直平分線(xiàn)上

∴點(diǎn)P的坐標(biāo)為(

將點(diǎn)P的坐標(biāo)代入直線(xiàn)SC的解析式中,得

解得:

經(jīng)檢驗(yàn):均為原方程的解

當(dāng)t=2時(shí),點(diǎn)R的坐標(biāo)為(2,4);

當(dāng)t=時(shí),點(diǎn)R的坐標(biāo)為(,

綜上所述:R24)或R,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某景區(qū)內(nèi)有一塊矩形油菜花田地(數(shù)據(jù)如圖示,單位:m.)現(xiàn)在其中修建一條觀花道(圖中陰影部分)供游人賞花.設(shè)改造后剩余油菜花地所占面積為ym2.

(1)yx的函數(shù)表達(dá)式;

(2)若改造后觀花道的面積為13m2,求x的值;

(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝店老板到廠(chǎng)家選購(gòu)、兩種品牌的羽絨服,品牌羽絨服每件進(jìn)價(jià)比品牌羽絨服每件進(jìn)價(jià)多元,若用元購(gòu)進(jìn)種羽絨服的數(shù)量是用元購(gòu)進(jìn)種羽絨服數(shù)量的.

1)求兩種品牌羽絨服每件進(jìn)價(jià)分別為多少元?

2)若品牌羽絨服每件售價(jià)為元,品牌羽絨服每件售價(jià)為元,服裝店老板決定一次性購(gòu)進(jìn)、兩種品牌羽絨服共件,在這批羽絨服全部出售后所獲利潤(rùn)不低于元,則最少購(gòu)進(jìn)品牌羽絨服多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小區(qū)要用籬笆圍成一個(gè)四邊形花壇、花壇的一邊利用足夠長(zhǎng)的墻,另三邊所用的籬笆之和恰好為18米.圍成的花壇是如圖所示的四邊形ABCD,其中∠ABC=∠BCD=90°,且BC=2AB.設(shè)AB邊的長(zhǎng)為x米.四邊形ABCD面積為S平方米.

(1)請(qǐng)直接寫(xiě)出Sx之間的函數(shù)關(guān)系式(不要求寫(xiě)出自變量x的取值范圍).

(2)當(dāng)x是多少時(shí),四邊形ABCD面積S最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在 10×6 的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為 1,線(xiàn)段 AB 的端點(diǎn) A、B 均在小正方形的頂點(diǎn)上.

1)在圖中畫(huà)出以 AB 為一腰的等腰ABC,點(diǎn) C 在小正方形頂點(diǎn)上,ABC 為鈍角三角形,且ABC 的面積為;

2)在圖中畫(huà)出以 AB 為斜邊的直角三角形 ABD, 點(diǎn) D在小正方形的頂點(diǎn)上,且 AD>BD;

3)連接 CD,請(qǐng)你直接寫(xiě)出線(xiàn)段 CD 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著生活水平的提高,人們?cè)絹?lái)越注重營(yíng)養(yǎng)健康,有一種有機(jī)水果在市場(chǎng)上特別受歡迎,某大型超市以10/千克的價(jià)格在產(chǎn)地收購(gòu)了6000千克水果,立即將其冷藏,請(qǐng)根據(jù)下列信息解決問(wèn)題:

①水果的市場(chǎng)價(jià)每天每千克上漲0.1元;

②平均每天有10千克的該水果損壞,不能出售;

③每天的冷藏費(fèi)用為300元;

④該水果最多保存110天;

1)若將這批水果存放天后一次性出售,則天后這批水果的銷(xiāo)售單價(jià)為 元;

2)將這批水果存放多少天后一次性出售所得利潤(rùn)為9600元?

3)將這批水果存放多少天后一次性出售可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)AB與拋物線(xiàn)Cyax2+2x+c相交于點(diǎn)A(10)和點(diǎn)B(2,3)兩點(diǎn).

(1)求拋物線(xiàn)C函數(shù)表達(dá)式;

(2)若點(diǎn)M是位于直線(xiàn)AB上方拋物線(xiàn)上的一動(dòng)點(diǎn),當(dāng)的面積最大時(shí),求此時(shí)的面積S及點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以△ABC的三條邊為邊,分別向外作正方形,連接EF,GH,DJ,如果△ABC的面積為8,則圖中陰影部分的面積為(

A.28B.24C.20D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了扎實(shí)推進(jìn)精準(zhǔn)扶貧工作,某地出臺(tái)了民生兜底、醫(yī)保脫貧、教育救助、產(chǎn)業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶(hù)貧困戶(hù)都享受了25種幫扶措施,現(xiàn)把享受了2種、3種、4種和5種幫扶措施的貧困戶(hù)分別稱(chēng)為A、B、CD類(lèi)貧困戶(hù).為檢査幫扶措施是否落實(shí),隨機(jī)抽取了若干貧困戶(hù)進(jìn)行調(diào)查,現(xiàn)將收集的數(shù)據(jù)繪制成下面兩幅不完整的統(tǒng)計(jì)圖:

請(qǐng)根據(jù)圖中信息回答下面的問(wèn)題:

1)本次抽樣調(diào)查了多少戶(hù)貧困戶(hù)?

2)抽查了多少戶(hù)C類(lèi)貧困戶(hù)?并補(bǔ)全統(tǒng)計(jì)圖;

3)若該地共有13000戶(hù)貧困戶(hù),請(qǐng)估計(jì)至少得到4項(xiàng)幫扶措施的大約有多少戶(hù)?

4)為更好地做好精準(zhǔn)扶貧工作,現(xiàn)準(zhǔn)備從D類(lèi)貧困戶(hù)中的甲、乙、丙、丁四戶(hù)中隨機(jī)選取兩戶(hù)進(jìn)行重點(diǎn)幫扶,請(qǐng)用樹(shù)狀圖或列表法求出恰好選中甲和丁的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案