已知|m|=5,|n|=2,|m-n|=n-m,則m+n的值是

[  ]

A.-7
B.-3
C.-7或-3
D.7或-7或3或-3
答案:C
解析:

由題可知,m=±5,n=±2

mn的值代入|mn|=nm

只有當(dāng)m=5時(shí),n=2

當(dāng)m=5時(shí),n=2

時(shí) 等式成立

則可有m+n應(yīng)是-7或-3


提示:

提示:由|m|5m=±5,由|n|2n=±2,又|mn|nm,即mn0,故m=-5,n=-2m=-5,n2


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=kx-3與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)C,拋物線經(jīng)過點(diǎn)A和點(diǎn)C,動(dòng)點(diǎn)P在x軸上以每秒1個(gè)長(zhǎng)度單位的速度由拋物線與x軸的另一個(gè)交點(diǎn)B向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q由點(diǎn)C沿線段CA向點(diǎn)A運(yùn)動(dòng)且速度是點(diǎn)P運(yùn)動(dòng)速度的2倍。
【小題1】(1)求此拋物線的解析式和直線的解析式;   
【小題2】(2)如果點(diǎn)P和點(diǎn)Q同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t(秒),試問當(dāng)t為何值時(shí),△PQA是直角三角形;
【小題3】(3)在直線CA上方的拋物線上是否存在一點(diǎn)D,使得△ACD的面積最大,若存在,求出點(diǎn)D坐標(biāo);若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+bx+3的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且點(diǎn)C、D是拋物線上的一對(duì)對(duì)稱點(diǎn)

【小題1】求拋物線的解析式
【小題2】求點(diǎn)D的坐標(biāo),并在圖中畫出直線BD
【小題3】求出直線BD的一次函數(shù)解析式,并根據(jù)圖象回答:當(dāng)x滿足什么條件時(shí),上述二次函數(shù)的值大于該一次函數(shù)的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一次函數(shù)y1=kx+b與反比例函數(shù)y2=在同一直角坐標(biāo)系中的圖象如圖所示,則當(dāng)y1<y2時(shí),x的取值范圍是【   】
A.x<-1或0<x<3B.-1<x<0或x>3
C.-1<x<0D.x>3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,∠1=∠2,且∠1=∠3,閱讀并補(bǔ)充下列推理過程,在括號(hào)中填寫理由:
解:∵∠1=∠2(           )
                  (                           )             
又∵∠1=∠3(已知)
∴∠2=∠3            
                  (                           )
∴∠1+∠4=180°        (                           )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題10分) 已知一次函數(shù)y的圖象與x軸交于點(diǎn)A.與軸交于點(diǎn);二次函數(shù)圖象與一次函數(shù)y的圖象交于兩點(diǎn),與軸交于兩點(diǎn)且的坐標(biāo)為

(1)求二次函數(shù)的解析式;
(2)在軸上是否存在點(diǎn)P,使得△是直角三角形?若存在,求出所有的點(diǎn),若不存在,請(qǐng)說明理由。
 

查看答案和解析>>

同步練習(xí)冊(cè)答案