【題目】填空,完成下列說(shuō)理過(guò)程

如圖,點(diǎn)A,O,B在同一條直線上,OD,OE分別平分∠AOC和∠BOC.求∠DOE的度數(shù).

解:因?yàn)?/span>OD是∠AOC的平分線,   

所以∠COD=AOC.   

因?yàn)?/span>OE是∠BOC 的平分線,

所以   =BOC.

所以∠DOE=COD+COE=AOC+BOC)=AOB=   °.

【答案】見(jiàn)解析.

【解析】

根據(jù)已知條件和角平分線的性質(zhì):一個(gè)角的平分線把這個(gè)角分成兩個(gè)大小相同的角,據(jù)此逐項(xiàng)填空即可.

解:因?yàn)?/span>OD是∠AOC的平分線,(已知)

所以∠COD=AOC.(角平分線定義)

因?yàn)?/span>OE是∠BOC 的平分線,

所以∠COE=BOC.

所以∠DOE=COD+COE=AOC+BOC)=AOB=90°.

故答案為:已知;角平分線定義;∠COE;90.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線分別與y軸、x軸交于點(diǎn)A、點(diǎn)B,點(diǎn)C的坐標(biāo)為(-3,0),D為直線AB上一動(dòng)點(diǎn),連接CDy軸于點(diǎn)E.

(1) 點(diǎn)B的坐標(biāo)為__________,不等式的解集為___________

(2) SCOE=SADE,求點(diǎn)D的坐標(biāo);

(3) 如圖2,以CD為邊作菱形CDFG,且∠CDF=60°.當(dāng)點(diǎn)D運(yùn)動(dòng)時(shí),點(diǎn)G在一條定直線上運(yùn)動(dòng),請(qǐng)求出這條定直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程組:

(1)

(2)

(3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是中國(guó)古代著名的“楊輝三角形”的示意圖.圖中填入的所有數(shù)的總和等于(

A. 126 B. 127 C. 128 D. 129

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分12分)如圖,直線l1的解析表達(dá)式為:,且l1x

交于點(diǎn)D,直線l2經(jīng)過(guò)點(diǎn)A,B,直線l1,l2交于點(diǎn)C

1】(1)求直線l2的函數(shù)關(guān)系式;

2】(2)求ADC的面積;

3】(3)若點(diǎn)H為坐標(biāo)平面內(nèi)任意一點(diǎn),在坐標(biāo)平面內(nèi)是否存在這樣的點(diǎn)H,使以A、D、C、H為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P,點(diǎn)Q分別代表兩個(gè)村莊,直線l代表兩個(gè)村莊中間的一條公路.根據(jù)居民出行的需要,計(jì)劃在公路l上的某處設(shè)置一個(gè)公交站.

(1)若考慮到村莊P居住的老年人較多,計(jì)劃建一個(gè)離村莊P最近的車(chē)站,請(qǐng)?jiān)诠?/span>l上畫(huà)出車(chē)站的位置(用點(diǎn)M表示),依據(jù)是   

(2)若考慮到修路的費(fèi)用問(wèn)題,希望車(chē)站的位置到村莊P和村莊Q的距離之和最小,請(qǐng)?jiān)诠?/span>l上畫(huà)出車(chē)站的位置(用點(diǎn)N表示),依據(jù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解放橋是天津市的標(biāo)志性建筑之一,是一座全鋼結(jié)構(gòu)的部分可開(kāi)啟的橋梁. (Ⅰ)如圖①,已知解放橋可開(kāi)啟部分的橋面的跨度AB等于47m,從AB的中點(diǎn)C處開(kāi)啟,則AC開(kāi)啟至AC′的位置時(shí),AC′的長(zhǎng)為 m;
(Ⅱ)如圖②,某校數(shù)學(xué)興趣小組要測(cè)量解放橋的全長(zhǎng)PQ,在觀景平臺(tái)M處測(cè)得∠PMQ=54°,沿河岸MQ前行,在觀景平臺(tái)N處測(cè)得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放橋的全長(zhǎng)PQ(tan54°≈1.4,tan73°≈3.3,結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E、F分別為AB、CD上的點(diǎn),且AE=CF= AB,點(diǎn)O為線段EF的中點(diǎn),過(guò)點(diǎn)O作直線與正方形的一組對(duì)邊分別交于P、Q兩點(diǎn),并且滿足PQ=EF,則這樣的直線PQ(不同于EF)有條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

1)填空:點(diǎn)B在數(shù)軸上表示的數(shù)是 ,點(diǎn)C在數(shù)軸上表示的數(shù)是 ;

2)若線段CD以每秒3個(gè)單位的速度向右勻速運(yùn)動(dòng),當(dāng)點(diǎn)D運(yùn)動(dòng)到A時(shí),線段CD與線段AB開(kāi)始有重疊部分,此時(shí)線段CD運(yùn)動(dòng)了 秒;

3)在(2)的條件下,線段CD繼續(xù)向右運(yùn)動(dòng),問(wèn)再經(jīng)過(guò) 秒后,線段CD與線段AB不再有重疊部分;

4)若線段AB、CD同時(shí)從圖中位置出發(fā),線段AB以每秒2個(gè)單位的速度向左勻速運(yùn)動(dòng),線段CD仍以每秒3個(gè)單位的速度向右勻速運(yùn)動(dòng),點(diǎn)P是線段CD的中點(diǎn),問(wèn)運(yùn)動(dòng)幾秒時(shí),點(diǎn)P與線段AB兩端點(diǎn)(AB)的距離為1個(gè)單位?

查看答案和解析>>

同步練習(xí)冊(cè)答案