【題目】已知ABCD中,AD=2AB,F(xiàn)是BC的中點,作AE⊥CD,垂足E在線段CD上,連結(jié)EF、AF,下列結(jié)論:①2∠BAF=∠BAD;②EF=AF;③S△ABF≤S△AEF;④∠BFE=3∠CEF.中一定成立的是( )
A. ①②④ B. ①③ C. ②③④ D. ①②③④
【答案】D
【解析】因為F是BC的中點,所以F=FC,然后根據(jù)平行四邊形的性質(zhì)和AD=2AB,可得到BC=2AB=2CD,即BF=FC=AB,再根據(jù)“等邊對等角”可得∠AFB=∠BAF,然后平行線的性質(zhì),可得∠AFB=∠FAB,即可得到2∠BAF=∠BAD,故①正確;
延長EF,交AB的延長線于M,由平行四邊形的性質(zhì)和中點的性質(zhì),可證明△MBF≌△ECF(ASA)然后根據(jù)全等三角形的性質(zhì)和垂直的性質(zhì)證得EF=AF,故②正確;
根據(jù)EF=FM可知S△EFC=S△AFM,所以可得S△ABF≤S△AEF,故③正確;
設(shè)∠FEA=x,則∠FAE=x,可得∠BAF=∠AFB=90°-x,進(jìn)而求得∠EFA=180°-2x,則∠EFB=90°-x+180°-2x=270°-3x,再根據(jù)∠CFE=90°-x,可得∠BFE=3∠CEF,故④正確.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料并填空: 在體育比賽中,我們常常會遇到計算比賽場次的問題,這時我們可以借助數(shù)線段的方法來計算.比如在一個小組中有 4 個隊,進(jìn)行單循環(huán)比賽,我們要計算總的比賽場次,我們就 設(shè)這四個隊分別為 A、B、C、D,并把它們標(biāo)在同一條線段上,如下圖:
因為單循環(huán)比賽就是每兩個隊之間都要比賽一場,這就相當(dāng)于,在上述圖形中四個點連接線段,按一定規(guī)律得到的線段有:
AB,AC,AD…………3 條
BC,BD………………2 條
CD……………………1 條
總的線段條數(shù)是 3+2+1=6
所以可知 4 個隊進(jìn)行單循環(huán)比賽共比賽六場.
(1).類比上述想法,若一個小組有 6 個隊,進(jìn)行單循環(huán)比賽,則總的比賽場次是_____
(2).類比上述想法,若一個小組有 n 個隊,進(jìn)行單循環(huán)比賽,則總的比賽場次是_____
(3).我們知道 2006 年世界杯共有 32 支代表隊參加比賽,共分成 8 個小組,每組 4 個 代表隊.第一階段每個小組進(jìn)行單循環(huán)比賽.則第一階段共 需 要 進(jìn) 行_______ 場比賽.
(4).若分成 m 個小組,每個小組有 n 個隊,第一階段每個小組進(jìn)行單循環(huán)比賽.則第 一階段共需要進(jìn)行_____________場比賽.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售2輛A型車和1輛B型車,銷售額為62萬元.
(1)求每輛A型車和B型車的售價各多少萬元.
(2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6輛,購車費不少于130萬元,且不超過140萬元. 則有哪幾種購車方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了解學(xué)生“自主學(xué)習(xí)、合作交流”的情況,對八年級各班部分同學(xué)進(jìn)行了一段時間的跟蹤調(diào)査,將調(diào)查結(jié)果(A:特別好; B:較好; C:一般; D:較差)繪制成以下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中提供的信息,解答下列問題:
(1)此次跟蹤調(diào)查的學(xué)生有人;扇形統(tǒng)計圖中,D類所占圓心角為度;
(2)補全條形統(tǒng)計圖;
(3)如果該校八年級共有學(xué)生360人,試估計A類學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD是菱形,AD=5,過點D作AB的垂線DH,垂足為H,交對角線AC于M,連接BM,且AH=3.
(1)求證:DM=BM;
(2)求MH的長;
(3)如圖2,動點P從點A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點C勻速運動,設(shè)△PMB的面積為S(S≠0),點P的運動時間為t秒,求S與t之間的函數(shù)關(guān)系式;
(4)在(3)的條件下,當(dāng)點P在邊AB上運動時是否存在這樣的 t值,使∠MPB與∠BCD互為余角,若存在,則求出t值,若不存,在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC紙片中,∠ACB=90°,AC=6,BC=8,P是AB邊上一點,連接CP.沿CP把Rt△ABC紙片裁開,要使△ACP是等腰三角形,那么AP的長度是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=﹣ax2+2ax﹣a﹣3(a>0)和y2=a(x+1)2﹣1(a>0)的頂點分別為M、N,與y軸分別交于E、F.
(1)①函數(shù)y1=﹣ax2+2ax﹣a﹣3(a>0)的最大值是;
②當(dāng)y1、y2的值都隨x的增大而增大時,自變量x的取值范圍是;
(2)當(dāng)EF=MN時,求a值,并判斷四邊形EMFN是何種特殊的四邊形;
(3)若y2=a(x+1)2﹣1(a>0)的圖象與x軸的右交點為A(m,0),當(dāng)△AMN為等腰三角形時,求方程a(x+1)2﹣1=0的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點C,D作BA,BC的平行線交于點E,且DE交AC于點O,連接AE.
(1)求證:四邊形ADCE是菱形;
(2)若AC=2DE,求sin∠CDB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com