【題目】九年(1)班的體育課上,小明、小強和小華三人在學(xué)習(xí)訓(xùn)練足球,足球從一人傳到另一人就記為踢一次.
(1)如果從小強開始踢,經(jīng)過兩次踢球后,足球踢到了小明處的概率是多少?請用數(shù)狀圖或列表法說明.
(2)如果踢三次,球踢到了小明處的可能性最小,應(yīng)從誰開始踢?(直接寫出結(jié)論)
【答案】(1);(2)應(yīng)該從小明開始踢.
【解析】
(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與經(jīng)過兩次踢后,足球踢到了小明處的情況,再利用概率公式求解即可求得答案.
(2)假設(shè)從任意一個開始踢球,畫出樹狀圖,求出經(jīng)過踢三次后,球踢到每人處的概率,然后比較,即可得出結(jié)論.
(1)畫樹狀圖得:
∵共有4種等可能的結(jié)果,經(jīng)過兩次踢后,足球踢到了小明處的有1種情況,∴足球踢到了小明處的概率是:;
(2)假設(shè)從小明開始踢,畫樹狀圖得:
∵共有8種等可能的結(jié)果,經(jīng)過踢三次后,球踢到了小明處的有2種情況,∴經(jīng)過踢三次后,球踢到了小明處的概率為:,球踢到了小強處的概率為:,球踢到了小華處的概率為:.即從誰開始踢球,踢三次后,球踢到了他自己處的可能性最小.故應(yīng)從小明開始踢球.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的對稱軸是x=﹣1,且過點(,0),有下列結(jié)論:①abc>0;②a﹣2b+4c=0;③25a+4c=10b;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有錯誤的結(jié)論有( )個.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=mx+n與反比例函數(shù)y=其中m、n為常數(shù),且mn<0,則它們在同一坐標系中的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.
(1)求證:∠DAF=∠CDE;
(2)求證:△ADF∽△DEC;
(3)若AE=6,AD=8,AB=7,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC與∠ACB的平分線相較于點E,過點E作EF∥BC交AC于點F,則EF的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=ax2-x+c經(jīng)過原點O與點A(6,0)兩點,過點A作AC⊥x軸,交直線y=2x-2于點C,且直線y=2x-2與x軸交于點D.
(1)求拋物線的解析式,并求出點C和點D的坐標;
(2)求點A關(guān)于直線y=2x-2的對稱點A′的坐標,并判斷點A′是否在拋物線上,并說明理由;
(3)點P(x,y)是拋物線上一動點,過點P作y軸的平行線,交線段CA′于點Q,設(shè)線段PQ的長為l,求l與x的函數(shù)關(guān)系式及l的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】公交總站(A點)與B、C兩個站點的位置如圖所示,已知AC=6km,∠B=30°,∠C=15°,求B站點離公交總站的距離即AB的長(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將函數(shù)的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(-4,m),B(-1,n),平移后的對應(yīng)點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是 ( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com