【題目】如圖,的直徑,弦,,,則由,圍成的圖形(圖中陰影部分)的面積為(

A. B. π C. D.

【答案】C

【解析】

連接AD,即可證明AOD是等邊三角形,在直角ACE中利用勾股定理求得AE的長(zhǎng),則可以證明AE=OE,證明ACE≌△OED,則S陰影=S扇形OAD,利用扇形的面積公式求解.

連接AD.

∵∠AOD=2ACD=60°

又∵OA=OD,

∴△AOD是等邊三角形.

AB是⊙O的直徑,弦CDAB,

CE=DE=CD=3,,

AD=AC,

又∵∠ACD=30°,

AE=CEtan30°=3×=,AC=,

AD=AC=OA=2,

AE=OE,

ACEODE中,

,

∴△ACE≌△OED(SAS),

S陰影=S扇形OAD==2π.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的ABC中,ABACBC,且DBC上一點(diǎn)。現(xiàn)打算在AB上找一點(diǎn)P,在AC上找一點(diǎn)Q,使得APQ與以P、D、Q為頂點(diǎn)的三角形全等,以下是甲、乙兩人的作法:

甲:連接AD,作AD的中垂線分別交AB、ACP點(diǎn)、Q點(diǎn),則P、Q兩點(diǎn)即為所求;

乙:過D作與AC平行的直線交ABP點(diǎn),過D作與AB平行的直線交ACQ點(diǎn),則P、Q兩點(diǎn)即為所求;

對(duì)于甲、乙兩人的作法,下列判斷何者正確( 。?

A.兩人皆正確B.兩人皆錯(cuò)誤C.甲正確,乙錯(cuò)誤D.甲錯(cuò)誤,乙正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ADBC邊上的高,AE、BF分別是∠BAC、ABC的平分線,∠BAC=50°,ABC=60°,則∠EAD+ACD=( 。

A. 75° B. 80° C. 85° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l過點(diǎn)M(3,0),且平行于y軸.

(1)如果△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣2,0),B(﹣1,0),C(﹣1,2),△ABC關(guān)于y軸的對(duì)稱圖形是△A1B1C1,△A1B1C1關(guān)于直線l的對(duì)稱圖形是△A2B2C2,寫出△A2B2C2的三個(gè)頂點(diǎn)的坐標(biāo);

(2)如果點(diǎn)P的坐標(biāo)是(﹣a,0),其中0<a<3,點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)是P1,點(diǎn)P1關(guān)于直線l的對(duì)稱點(diǎn)是P2,求PP2的長(zhǎng).

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直徑,點(diǎn)、上,,過點(diǎn)作,垂足為

的長(zhǎng);

的延長(zhǎng)線交于點(diǎn),求弦和弧圍成的圖形(陰影部分)的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市2013~2017年常住人口數(shù)統(tǒng)計(jì)如圖所示.

根據(jù)圖中提供的信息,回答下列問題:

(1)該市常住人口數(shù),2017年比2016年增加了______萬人;

(2)與上一年相比,該市常住人口數(shù)增加最多的年份是____________

(3)預(yù)測(cè)2018年該市常住人口數(shù)大約為多少萬人?請(qǐng)用所學(xué)的統(tǒng)計(jì)知識(shí)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等邊AOB的邊長(zhǎng)為4,以O為坐標(biāo)原點(diǎn),OB所在直線為x軸建立如圖所示的平面直角坐標(biāo)系.

1)求點(diǎn)A的坐標(biāo);

2)若直線ykxk0)與線段AB有交點(diǎn),求k的取值范圍;

3)若點(diǎn)Cx軸正半軸上,以線段AC為邊在第一象限內(nèi)作等邊ACD,求直線BD的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過點(diǎn)C,過AADED于點(diǎn)D,過BBEED于點(diǎn)E.
求證:BEC≌△CDA;
(模型應(yīng)用)
(2)①已知直線l1:y=x+4與坐標(biāo)軸交于點(diǎn)A、B,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45o至直線l2,如圖2,求直線l2的函數(shù)表達(dá)式;
②如圖3,長(zhǎng)方形ABCO,O為坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)為(8,-6),點(diǎn)A、C分別在坐標(biāo)軸上,點(diǎn)P是線段BC上的動(dòng)點(diǎn),點(diǎn)D是直線y=-2x+6上的動(dòng)點(diǎn)且在第四象限.若APD是以點(diǎn)D為直角頂點(diǎn)的等腰直角三角形,請(qǐng)直接寫出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,A′B′C′ABC經(jīng)過平移得到的,ABC中任意一點(diǎn)P(x1,y1)平移后的對(duì)應(yīng)點(diǎn)為P′(x1+6,y1+4)。

(1)請(qǐng)寫出三角形ABC平移的過程;

(2)分別寫出點(diǎn)A′,B′,C′ 的坐標(biāo)。

(3)求A′B′C′的面積。

查看答案和解析>>

同步練習(xí)冊(cè)答案