已知:如圖,四邊形ABCD是矩形(AD>AB),點E在BC上,且AE=AD,DF⊥AE,垂足為F,
求證:DF=AB.
分析:連接DE,根據(jù)矩形性質(zhì)得出∠C=90°,AB=CD,AD∥BC,求出∠ADE=∠DEC=∠DEF,∠C=∠DFE,證△DFE≌△DCE,推出DF=CD即可.
解答:證明:
連接DE,
∵四邊形ABCD是矩形,
∴∠C=90°,AB=CD,AD∥BC,
∴∠ADE=∠DEC,
∵AD=AE,
∴∠ADE=∠FED,
∴∠DEC=∠FED,
∵DF⊥AE,
∴∠DFE=∠C=90°,
在△DFE和△DCE中
∠DEF=∠DEC
∠DFE=∠C
DE=DE

∴△DFE≌△DCE,
∴DF=CD,
∵AB=CD,
∴DF=AB.
點評:本題考查了矩形性質(zhì),等腰三角形的性質(zhì),平行線性質(zhì),全等三角形的性質(zhì)和判定的應(yīng)用,注意:矩形的每個角都是直角,矩形的對邊相等且平行.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,四邊形ABCD中∠B=90°,AB=9,BC=12,AD=8,CD=17.
試求:(1)AC的長;(2)四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,四邊形ABCD內(nèi)接于⊙O,且AB∥CD,AD∥BC,
求證:四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,四邊形ABCD是正方形,E、F分別是AB和AD延長線上的點,且BE=DF
(1)求證:CE=CF;
(2)求∠CEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,四邊形ABCD中,BC=CD=10,AB=15,AB⊥BC,CD⊥BC,若把四邊形ABCD繞直線AB旋轉(zhuǎn)一周,則所得幾何體的表面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,四邊形ABCD及一點P.
求作:四邊形A′B′C′D′,使得它是由四邊形ABCD繞P點順時針旋轉(zhuǎn)150°得到的.

查看答案和解析>>

同步練習(xí)冊答案