【題目】已知x=3是方程 的一個(gè)根,求k的值和方程其余的根.

【答案】解:把x=3代入 ,得 + =1,解得k=﹣3.

將k=﹣3代入原方程得: ,

方程兩邊都乘以x(x+2),得10x﹣3(x+2)=x(x+2),

整理得x2﹣5x+6=0,解得x1=2,x2=3.

檢驗(yàn):x=2時(shí),x(x+2)=8≠0

∴x=2是原方程的根.

x=3時(shí),x(x+2)=15≠0

∴x=3是原方程的根.

∴原方程的根為x1=2,x2=3.

故k=3,方程其余的根為x=2


【解析】根據(jù)方程根的定義把x=3代入原方程求出K的值,再把K的值反代回原方程求解檢驗(yàn)得出結(jié)論。
【考點(diǎn)精析】本題主要考查了分式方程的解和去分母法的相關(guān)知識(shí)點(diǎn),需要掌握分式方程無(wú)解(轉(zhuǎn)化成整式方程來(lái)解,產(chǎn)生了增根;轉(zhuǎn)化的整式方程無(wú)解);解的正負(fù)情況:先化為整式方程,求整式方程的解;先約后乘公分母,整式方程轉(zhuǎn)化出.特殊情況可換元,去掉分母是出路.求得解后要驗(yàn)根,原留增舍別含糊才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,線段AB的兩個(gè)端點(diǎn)是A(﹣5,1),B(﹣2,3),平移線段AB得到線段A1B1 , 若點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)為(1,2),則點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電子廠商設(shè)計(jì)了一款制造成本為18元新型電子廠品,投放市場(chǎng)進(jìn)行試銷.經(jīng)過(guò)調(diào)查,得到每月銷售量y(萬(wàn)件)與銷售單價(jià)x(元)之間的部分?jǐn)?shù)據(jù)如下:

銷售單價(jià)x(元/件)

20

25

30

35

每月銷售量y(萬(wàn)件)

60

50

40

30


(1)求出每月銷售量y(萬(wàn)件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式.
(2)求出每月的利潤(rùn)z(萬(wàn)元)與銷售單x(元)之間的函數(shù)關(guān)系式.
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售利潤(rùn)率不能高于50%,而且該電子廠制造出這種產(chǎn)品每月的制造成本不能超過(guò)900萬(wàn)元.那么并求出當(dāng)銷售單價(jià)定為多少元時(shí),廠商每月能獲得最大利潤(rùn)?最大利潤(rùn)是多少?(利潤(rùn)=售價(jià)﹣制造成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線,點(diǎn)上,點(diǎn)、點(diǎn)上,的角平分線于點(diǎn),過(guò)點(diǎn)于點(diǎn),己知,則的度數(shù)為(

A. 26°B. 32°C. 36°D. 42°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】紅星中學(xué)計(jì)劃組織春季研修活動(dòng),活動(dòng)組織負(fù)責(zé)人從公交公司了解到如下租車信息:

車型

載客量(人/輛)

租金(元/輛)

校方從實(shí)際情況出發(fā),決定租用型客車共輛,而且租車費(fèi)用不超過(guò)元。

1)請(qǐng)為校方設(shè)計(jì)可能的租車方案;

2)在(1)的條件下,校方根據(jù)自愿的原則,統(tǒng)計(jì)發(fā)現(xiàn)有人參加,請(qǐng)問(wèn)校方應(yīng)如何租車,且又省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學(xué)家楊輝揭示了二項(xiàng)和的展開式的各項(xiàng)系數(shù)規(guī)律,比歐洲的發(fā)現(xiàn)早三百年,為紀(jì)念楊輝的功績(jī),世人稱如圖中右圖叫楊輝三角。

1)觀察楊輝三角規(guī)律,依次寫出楊輝三角行中從左到右的各數(shù);

2)請(qǐng)運(yùn)用冪的意義和多項(xiàng)式乘法法則,按如下要求展開下列各式,以驗(yàn)證楊輝三角第四行的規(guī)律:展開后各項(xiàng)按字母降冪、升冪排列

3)解不等式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某氣球內(nèi)充滿一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓pkPa是氣體體積Vm3的反比例函數(shù),其圖象如圖所示

1寫出這一函數(shù)的表達(dá)式

2當(dāng)氣體體積為1 m3時(shí)氣壓是多少?

3當(dāng)氣球內(nèi)的氣壓大于140 kPa時(shí)氣球?qū)⒈?/span>,為了安全考慮,氣體的體積應(yīng)不小于多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示:

(1)若∠1=B,則__________,理由是 ;

(2)若∠3=5,則__________,理由是 ;

(3)若∠2=4,則__________,理由是 ;

(4)若∠1=D,則__________,理由是 ;

(5)若∠B+BCD=180°,__________,理由是 ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,如果以正方形ABCD的對(duì)角線AC為邊作第二個(gè)正方形ACEF,再以對(duì)角線AE為邊作第三個(gè)正方形AEGH,如此下去,……,已知正方形ABCD的面積為S11,按上述方法所作的正方形的面積依次為S2,S3,……………,則Snn為正整數(shù)),那么第n個(gè)正方形的面積Sn等于(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案