先化簡(jiǎn):,然后從﹣1,0,1,2中選一個(gè)你認(rèn)為合適的a值,代入求值.
【考點(diǎn)】分式的化簡(jiǎn)求值.
【分析】首先對(duì)括號(hào)內(nèi)的分式通分相減,把除法轉(zhuǎn)化為乘法,然后進(jìn)行約分即可化簡(jiǎn),然后代入求值.
【解答】解:原式=÷
=•
=1﹣a,
當(dāng)a=2時(shí),原式=1﹣a=1﹣2=﹣1.
【點(diǎn)評(píng)】本題考查了分式的化簡(jiǎn)求值,注意取喜愛的數(shù)代入求值時(shí),要特注意原式及化簡(jiǎn)過(guò)程中的每一步都有意義.如果取x=0,則原式?jīng)]有意義,因此,盡管0是大家的所喜愛的數(shù),但在本題中卻是不允許的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知拋物線的對(duì)稱軸為直線l:x=4,且與x軸交于點(diǎn)A(2,0),與y軸交于點(diǎn)C(0,2).
(1)求拋物線的解析式;
(2)試探究在此拋物線的對(duì)稱軸l上是否存在一點(diǎn)P,使AP+CP的值最。咳舸嬖,求AP+CP的最小值,若不存在,請(qǐng)說(shuō)明理由;
(3)以AB為直徑作⊙M,過(guò)點(diǎn)C作直線CE與⊙M相切于點(diǎn)E,CE交x軸于點(diǎn)D,求直線CE的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如果三角形的兩條邊長(zhǎng)分別為23cm和10cm,第三邊與其中一邊的長(zhǎng)相等,那么第三邊的長(zhǎng)為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
請(qǐng)閱讀下列材料:
問(wèn)題:如圖1,點(diǎn)A,B在直線l的同側(cè),在直線l上找一點(diǎn)P,使得AP+BP的值最。
小明的思路是:如圖2所示,先作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′,使點(diǎn)A′,B分別位于直線l的兩側(cè),再連接A′B,根據(jù)“兩點(diǎn)之間線段最短”可知A′B與直線l的交點(diǎn)P即為所求.
請(qǐng)你參考小明同學(xué)的思路,探究并解決下列問(wèn)題:
(1)如圖3,在圖2的基礎(chǔ)上,設(shè)AA'與直線l的交點(diǎn)為C,過(guò)點(diǎn)B作BD⊥l,垂足為D.若CP=1,AC=1,PD=2,直接寫出AP+BP的值;
(2)將(1)中的條件“AC=1”去掉,換成“BD=4﹣AC”,其它條件不變,直接寫出此時(shí)AP+BP的值;
(3)請(qǐng)結(jié)合圖形,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,E、F分別是正方形ABCD的邊CD、AD上的點(diǎn),
且CE=DF,AE、BF相交于點(diǎn)O,下列結(jié)論:
⑴ AE=BF ⑵ AE⊥BF ⑶ AO=OE
⑷ S△AOB=S四邊形DEOF中,正確的有 ( )
A 4個(gè) B 3個(gè) C 2個(gè) D 1個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com