【題目】如圖,將半徑為1,圓心角為120°的扇形OAB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一個(gè)角度,使點(diǎn)O的對(duì)應(yīng)點(diǎn)D落在弧AB上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為C,連接BC,則圖中CD、BC和弧BD圍成的封閉圖形面積是( 。

A. B. C. D.

【答案】B

【解析】

如圖,連接OD.首先證明O,D,C共線,可得圖中CD、BC和弧BD圍成的封閉圖形面積=SOBC-S扇形ODB,由此計(jì)算即可.

解:如圖,連接OD

由題意:OAODAD,

∴△AOD是等邊三角形,

∴∠ADO=∠AOD60°

∵∠ADC=∠AOB120°,

∴∠ADO+ADC180°,

OD,C共線,

∴圖中CD、BC和弧BD圍成的封閉圖形面積=SOBCS扇形ODB×1×-

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,E、F分別是AD、BC上的點(diǎn),將平行四邊形ABCD沿EF所在直線翻折,使點(diǎn)B與點(diǎn)D重合,且點(diǎn)A落在點(diǎn)A′處.

(1)求證:A′ED≌△CFD;

(2)連結(jié)BE,若∠EBF=60°,EF=3,求四邊形BFDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)社團(tuán)成員想利用所學(xué)的知識(shí)測(cè)量某廣告牌的寬度圖中線段MN的長(zhǎng),直線MN垂直于地面,垂足為點(diǎn)在地面A處測(cè)得點(diǎn)M的仰角為、點(diǎn)N的仰角為,在B處測(cè)得點(diǎn)M的仰角為,米,且A、B、P三點(diǎn)在一直線上請(qǐng)根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長(zhǎng).

參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=-3x+c與x軸相交于點(diǎn)A(1,0),與y軸相交于點(diǎn)B,拋物線y=-x2+bx+c經(jīng)過點(diǎn)A,B,與x軸的另一個(gè)交點(diǎn)是C.

(1)求拋物線的解析式;

(2)點(diǎn)P是對(duì)稱軸的左側(cè)拋物線上的一點(diǎn),當(dāng)S△PAB=2S△AOB時(shí),求點(diǎn)P的坐標(biāo);

(3)連接BC,拋物線上是否存在點(diǎn)M,使∠MCB=∠ABO?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師計(jì)劃到超市購(gòu)買甲種文具100個(gè),他到超市后發(fā)現(xiàn)還有乙種文具可供選擇,如果調(diào)整文具的購(gòu)買品種,每減少購(gòu)買1個(gè)甲種文具,需增加購(gòu)買2個(gè)乙種文具.設(shè)購(gòu)買x個(gè)甲種文具時(shí),需購(gòu)買y個(gè)乙種文具.

(1)①當(dāng)減少購(gòu)買1個(gè)甲種文具時(shí),x______,y________;

②求yx之間的函數(shù)表達(dá)式.

(2)已知甲種文具每個(gè)5元,乙種文具每個(gè)3元,張老師購(gòu)買這兩種文具共用去540元,甲、乙兩種文具各購(gòu)買了多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校一課外小組準(zhǔn)備進(jìn)行綠色環(huán)保的宣傳活動(dòng),需要印刷一批宣傳單,學(xué)校附近有甲、乙兩家印刷社,甲印刷社收費(fèi)y(元)與印數(shù)x(張)的函數(shù)關(guān)系是:y0.15x;乙印刷社收費(fèi)y(元)與印數(shù)x(張)的函數(shù)關(guān)系如圖所示:

1)寫出乙印刷社的收費(fèi)y(元)與印數(shù)x(張)之間的函數(shù)關(guān)系式;

2)若該小組在甲、乙兩印刷社打印了相同數(shù)量的宣傳單共用去70元,則共打印多少?gòu)埿麄鲉危?/span>

3)活動(dòng)結(jié)束后,市民反映良好,興趣小組決定再加印1500張宣傳單,若在甲、乙印刷社中選一家,興趣小組應(yīng)選擇哪家印刷社比較劃算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy,直線 與雙曲線 相交于AB兩點(diǎn),且A點(diǎn)橫坐標(biāo)為2C是第一象限內(nèi)雙曲線上一點(diǎn),連接CA并延長(zhǎng)交y軸于點(diǎn)D,連接BD,BC.

1k的值是________;

2)若AD=AC,則△BCD的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yx軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C

1)求直線AC的解析式;

2)如圖2,點(diǎn)Ea,b)是對(duì)稱軸右側(cè)拋物線上一點(diǎn),過點(diǎn)E垂直于y軸的直線與AC交于點(diǎn)Dm,n).點(diǎn)Px軸上的一點(diǎn),點(diǎn)Q是該拋物線對(duì)稱軸上的一點(diǎn),當(dāng)a+m最大時(shí),求點(diǎn)E的坐標(biāo),并直接寫出EQ+PQ+PB的最小值;

3)如圖3,在(2)的條件下,連結(jié)OD,將△AOD沿x軸翻折得到△AOM,再將△AOM沿射線CB的方向以每秒3個(gè)單位的速度沿平移,記平移后的△AOM為△AO'M',同時(shí)拋物線以每秒1個(gè)單位的速度沿x軸正方向平移,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B'.△A'B'M'能否為等腰三角形?若能,請(qǐng)求出所有符合條件的點(diǎn)M'的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yk1xb的圖象與反比例函數(shù)y (x<0)的圖象相交于點(diǎn)A(-1,2)、點(diǎn)B(-4,n).

(1)求此一次函數(shù)和反比例函數(shù)的表達(dá)式;

(2)AOB的面積;

(3)x軸上存在一點(diǎn)P,使PAB的周長(zhǎng)最小,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案