【題目】2018年高中一年級學(xué)生開始,湖南省全面啟動高考綜合改革,學(xué)生學(xué)習(xí)完必修課程后,可以根據(jù)高校相關(guān)專業(yè)的選課要求和自身興趣、志向、優(yōu)勢,從思想政治、歷史、地理、物理、化學(xué)、生物6個科目中,自主選擇3個科目參加等級考試.學(xué)生已選物理,還想從思想政治、歷史、地理3個文科科目中選1科,再從化學(xué)、生物2個理科科目中選1.若他選思想政治、歷史、地理的可能性相等,選化學(xué)、生物的可能性相等,則選修地理和生物的概率為___________.

【答案】

【解析】列表格得出所有等可能的情況,然后再找出符合題意的情況,根據(jù)概率公式進(jìn)行計算即可得.

政治

歷史

地理

化學(xué)

化學(xué),政治

化學(xué),歷史

化學(xué),地理

生物

生物,政治

生物,歷史

生物,地理

從表格中可以看出一共有6種等可能的情況,選擇地理和生物的有1種情況,

所以選擇地理和生物的概率是,

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰RtABC,ACB=90°,CA=CB,以BC為邊向外作等邊CBA,連接AD,過點C作∠ACB的角平分線與AD交于點E,連接BE

1)若AE=2,求CE的長度;

2)以AB為邊向下作AFBAFB=60°,連接FE,求證:FA+FB= FE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程.

(1)2(1-x)2-8=0 (2 )2x2x-1=0 (公式法)

(3)x2-3x+1=0(配方法) (4) (x-1)2-5(x-1)+6=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(0,1),且與正比例函數(shù)y=x的圖象相交于點(2,a).

求:(1)a的值;

(2)一次函數(shù)y=kx+b的解析式;

(3)在圖中畫出這兩個函數(shù)圖象,并求這兩個函數(shù)圖象與x軸所圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋里裝有分別標(biāo)有漢字”、“”、“”、“的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻.

(1)若從中任取一個球,球上的漢字剛好是的概率為__________.

(2)從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表的方法,求取出的兩個球上的漢字能組成歷城的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤被平均分成3個扇形,分別標(biāo)有1、2、3三個數(shù)字,小王和小李各轉(zhuǎn)動一次轉(zhuǎn)盤為一次游戲,當(dāng)每次轉(zhuǎn)盤停止后,指針?biāo)干刃蝺?nèi)的數(shù)為各自所得的數(shù),一次游戲結(jié)束得到一組數(shù)(若指針指在分界線時重轉(zhuǎn)).

(1)請你用樹狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結(jié)果;

(2)求每次游戲結(jié)束得到的一組數(shù)恰好是方程x2﹣3x+2=0的解的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,∠DAC的平分線交DC于點E,若點P,Q分別是AD和AE上的動點,則DQ+PQ的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下列材料:

問題:如圖,在正方形和平行四邊形中,點,,在同一條直線上,是線段的中點,連接,

探究:當(dāng)的夾角為多少度時,平行四邊形是正方形?

小聰同學(xué)的思路是:首先可以說明四邊形是矩形;然后延長于點,構(gòu)造全等三角形,經(jīng)過推理可以探索出問題的答案.

請你參考小聰同學(xué)的思路,探究并解決這個問題.

(1)求證:四邊形是矩形;

(2)的夾角為________度時,四邊形是正方形.

理由:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,,,點的中點.如果點在線段上以的速度由點點運動,同時,點在線段上由點點運動.

1)若點的運動速度與點的運動速度相等,經(jīng)過1秒后,是否全等,請說明理由.

2)若點的運動速度與點的運動速度不相等,當(dāng)點的運動速度為多少時,能夠使全等?

查看答案和解析>>

同步練習(xí)冊答案