19.已知a2+b2=5,ab=-2,求代數(shù)式2(4a2+2ab-b2)-3(5a2-3ab+2b2)+b2的值.

分析 原式去括號合并得到最簡結果,把已知等式代入計算即可求出值.

解答 解:原式=8a2+4ab-2b2-15a2+9ab-6b2+b2=-7a2+13ab-7b2=-7(a2+b2)+13ab,
當a2+b2=5,ab=-2時,原式=-35-26=-61.

點評 此題考查了整式的加減-化簡求值,熟練掌握運算法則是解本題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

9.如圖,四邊形ABCD中,∠A=∠B=90°,AB=25,AD=15,BC=10,點E是AB上一點,且DE=CE,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

10.某單位要招聘1名英語翻譯,張敏參加招聘考試的成績?nèi)绫硭荆?br />
張敏得分90808382
若把聽、說、讀、寫的成績按3:3:2:2計算最終得分,則張敏的最終得分為( 。
A.82B.83C.84D.85

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

7.若干個蘋果分給幾個小孩,如果每人分3個,那么余7個;如果每人分5個,那最后一人分到的蘋果不足5個,問有多少個小孩?多少個蘋果?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

14.計算:-$\frac{\sqrt{3}}{3}$cos245°•sin60°+$\frac{1}{6}$sin30°+tan45°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

4.已知:如圖,線段OA、OB、OC、OD、OE在同一平面內(nèi),且∠AOE=110°,∠AOB=20°.
(1)若OB平分∠AOC,求∠COE的度數(shù).
(2)在(1)條件下,若OD也平分∠BOE,求∠COD的度數(shù).
(3)若線段OA與OB分別為同一鐘表上某一時刻與分針,則經(jīng)過多少時間,OA與OB第一次垂直.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.(1)如圖①,你知道∠BOC=∠1+∠2+∠A的奧秘嗎?請用你學過的知識予以證明; 
(2)如圖②,設x=∠A+∠B+∠C+∠D+∠E,運用(1)中的結論填空.
x=180°;x=180°
(3)如圖③,一個六角星,其中∠BOD=80°,求∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

8.如圖,∠AOB=90°,∠AOC為∠AOB外的一個銳角,且∠AOC=30°,射線OM平分∠BOC,ON平分∠AOC.
(1)求∠MON的度數(shù);
(2)如果(1)中∠AOB=α,其他條件不變,求∠MON的度數(shù);
(3)如果(1)中∠AOC=β(β為銳角),其他條件不變,求∠MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

9.已知(x+y)2=25,xy=$\frac{9}{4}$,求x-y的值.

查看答案和解析>>

同步練習冊答案