【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),邊長(zhǎng)為2的正方形OABC的兩頂點(diǎn)A、C分別在y軸、x軸的正半軸上,現(xiàn)將正方形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn).
(1)如圖①,當(dāng)點(diǎn)A的對(duì)應(yīng)的A′落在直線y=x上時(shí),點(diǎn)A′的對(duì)應(yīng)坐標(biāo)為;點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)為;
(2)旋轉(zhuǎn)過程中,AB邊交直線y=x于點(diǎn)M,BC邊交x軸于點(diǎn)N,當(dāng)A點(diǎn)第一次落在直線y=x上時(shí),停止旋轉(zhuǎn).
①如圖2,在正方形OABC旋轉(zhuǎn)過程中,線段AM,MN,NC三者滿足什么樣的數(shù)量關(guān)系?請(qǐng)說明理由;
②當(dāng)AC∥MN時(shí),求△MBN內(nèi)切圓的半徑(直接寫出結(jié)果即可)
【答案】
(1)A′( , ),B′(2 ,0)
(2)解:①結(jié)論:AM+CN=MN;
理由:延長(zhǎng)BA交y軸于E點(diǎn),
則∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠AOM,
∴∠AOE=∠CON,
又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN,
在△OAE和△OCN中,
,
∴△OAE≌△OCN(ASA),
∴OE=ON,AE=CN,
在△OME和△OMN中
,
∴△OME≌△OMN(SAS).
∴MN=ME=AM+AE.
∴MN=AM+CN,
②∵M(jìn)N∥AC,
∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°,
∴∠BMN=∠BNM,
∴BM=BN,∵BA=BC,
∴AM=NC,
設(shè)AM=NC=a,則MN=2a,
在Rt△BMN中,(2a)2=(2﹣a)2+(2﹣a)2,
解得a=2 ﹣2或﹣2 ﹣2(舍棄),
∴MN=4 ﹣4,BM=BN=4﹣2 ,
∴△BMN的內(nèi)切圓半徑r= = =6﹣4
【解析】解:(1)如圖1中,作A′H⊥OB′于H.
∵四邊形ABCD是正方形,
∴OA=OC=BC=AB=2,∠BOC=45°=45,OB=2 ,
∵OA′=2,
∴AH=OH= ,
∴A′( , ),
∵旋轉(zhuǎn)角為45°,
∴B′在x軸上,
∴B′(2 ,0),
所以答案是A′( , ),B′(2 ,0);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是由同一型號(hào)的黑白兩種顏色的等邊三角形瓷磚按一定規(guī)律鋪設(shè)的圖形.仔細(xì)觀察圖形可知:
第1個(gè)圖形中有1塊黑色的瓷磚,可表示為;
第2個(gè)圖形中有3塊黑色的瓷磚,可表示為;
第3個(gè)圖形中有6塊黑色的瓷磚,可表示為;
則第個(gè)圖形中有__________塊黑色的瓷磚(為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組: 請(qǐng)結(jié)合題意填空,完成本題的解答:
(i)解不等式(1),得;
(ii)解不等式(2),得;
(iii)把不等式(1)和(2)的解集在數(shù)軸上表示出來:
(iv)原不等式的解集為: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車專賣店銷售A,B兩種型號(hào)的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售2輛A型車和1輛B型車,銷售額為62萬元.
(1)求每輛A型車和B型車的售價(jià)各多少萬元.
(2)甲公司擬向該店購(gòu)買A,B兩種型號(hào)的新能源汽車共6輛,購(gòu)車費(fèi)不少于130萬元,且不超過140萬元. 則有哪幾種購(gòu)車方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O(shè)為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過點(diǎn)M作⊙O的切線交邊BC于N.
(1)求證:△ODM∽△MCN;
(2)設(shè)DM=x,OA=R,求R關(guān)于x的函數(shù)關(guān)系式;
(3)在動(dòng)點(diǎn)O逐漸向點(diǎn)D運(yùn)動(dòng)(OA逐漸增大)的過程中,△CMN的周長(zhǎng)如何變化?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)以每秒的速度沿如圖甲所示的邊框按從的路徑移動(dòng),其中,相應(yīng)的的面積關(guān)于時(shí)間的函數(shù)圖象如圖乙所示,若,試回答下列問題:
(1)如圖甲_______;________.
(2)如圖乙,圖中的________,_______.
(3)在上述運(yùn)動(dòng)過程中,面積的最大值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,我們把杜甫(絕句)整齊排列放在平面直角坐標(biāo)系中:
(1)“東”、“窗”和“柳”的坐標(biāo)依次是:______、______和________.;
(2)將第1行與第3行對(duì)調(diào),再將第4列與第6列對(duì)調(diào),“里”由開始的坐標(biāo)________依次變換到:________和________;
(3)“門”開始的坐標(biāo)是(1,1),使它的坐標(biāo)到(3,2),應(yīng)該哪兩行對(duì)調(diào),同時(shí)哪兩列對(duì)調(diào)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果兩個(gè)三角形的兩條邊對(duì)應(yīng)相等,夾角互補(bǔ),那么這兩個(gè)三角形叫做互補(bǔ)三角形,如圖2,分別以△ABC的邊AB、AC為邊向外作正方形ABDE和ACGF,則圖中的兩個(gè)三角形就是互補(bǔ)三角形.
(1)用尺規(guī)將圖1中的△ABC分割成兩個(gè)互補(bǔ)三角形;
(2)證明圖2中的△ABC與△AEF兩個(gè)互補(bǔ)三角形面積相等;
(3)如圖3,在圖2的基礎(chǔ)上再以BC為邊向外作正方形BCHI.
①已知三個(gè)正方形面積分別是17、13、10,在如圖4的網(wǎng)格中(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1)畫出邊長(zhǎng)為 、 、 的三角形,并計(jì)算圖3中六邊形DEFGHI的面積.
②若△ABC的面積為2,求以EF、DI、HG的長(zhǎng)為邊的三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司招聘職員兩名,對(duì)甲、乙、丙、丁四名候選人進(jìn)行了筆試和面試,各項(xiàng)成績(jī)滿分均為100分,然后再按筆試占60%、面試占40%計(jì)算候選人的綜合成績(jī)(滿分為100分).
他們的各項(xiàng)成績(jī)?nèi)缦卤硭?/span>:
候選人 | 筆試成績(jī)/分 | 面試成績(jī)/分 |
甲 | 90 | 88 |
乙 | 84 | 92 |
丙 | x | 90 |
丁 | 88 | 86 |
(1)直接寫出這四名候選人面試成績(jī)的中位數(shù);
(2)現(xiàn)得知候選人丙的綜合成績(jī)?yōu)?/span>87.6分,求表中x的值;
(3)求出其余三名候選人的綜合成績(jī),并以綜合成績(jī)排序確定所要招聘的前兩名的人選.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com