【題目】如圖,矩形ABCD中,∠ACB=30°,將一塊直角三角板的直角頂點P放在兩對角線AC,BD的交點處,以點P為旋轉中心轉動三角板,并保證三角板的兩直角邊分別與邊AB,BC所在的直線相交,交點分別為E,F

1)當PEAB,PFBC時,如圖1,則的值為  ;

2)在(1)的基礎上,現(xiàn)將三角板繞點P逆時針旋轉0°<60°)角,如圖2,求的值;

3)若與(2)相比只有如下變化,點P在線段AC上,且AP:PC=1:2,旋轉角度,滿足60°<90°時,即如圖3示,的值是否變化?證明你的結論.

【答案】123)見解析

【解析】

1)證明△APE≌△PCF,得PE=CF;在RtPCF中,解直角三角形求得的值;

2)如答圖1所示,作輔助線,構造直角三角形,證明△PME∽△PNF,并利用(1)的結論,求得的值;

3)如答圖2所示,作輔助線,構造直角三角形,首先證明△APM∽△PCN,求得的值;然后證明△PME∽△PNF,從而由=求得的值.與(1)(2)問相比較,

的值發(fā)生了變化.

解:(1)∵矩形ABCD,

ABBC,PA=PC,

PEAB,BCAB

PEBC,

∴∠APE=PCF,

PFBCABBC,

PFAB,

∴∠PAE=CPF

∵在△APE與△PCF中,

∴△APE≌△PCFASA),

PE=CF

RtPCF中,,

.

故答案為:

(2) 如答圖1,過點PPMAB于點M,PNBC于點N,則PMPN,

PMPN,PEPF

∴∠EPM=FPN,

又∵∠PME=PNF=90°,

∴△PME∽△PNF

=

(1)

故答案為:.

(3)答:變化,理由如下:

證明:如答圖2,過點PPMAB于點M,PNBC于點N,則PMPN,PMBC,PNAB

PMBC,PNAB,

∴∠APM=PCN,∠PAM=CPN,

∴△APM∽△PCN,

,得到CN=2PM

RtPCN中,

PMPN,PEPF,

∴∠EPM=FPN,

又∵∠PME=PNF=90°,

∴△PME∽△PNF,

的值發(fā)生變化.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在圓心角為120°的扇形OAB中,半徑OA2,C的中點,DOA上任意一點(不與點O、A重合),則圖中陰影部分的面積為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,是平面內不與點重合的任意一點,連接,將線段繞點順時針旋轉得到線段,連接的中點,的中點.

1)問題發(fā)現(xiàn):

如圖1,當時,的值是_________,直線與直線相交所成的較小角的度數(shù)是________

2)類比探究:

如圖2,當時,請寫出的值及直線與直線相交所成的較小角的度數(shù),并說明理由.

3)解決問題:

如圖3,當時,若的中點,點在直線上,且點在同一條直線上,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個服裝廠加工同種型號的防護服,甲廠每天加工的數(shù)量是乙廠每天加工數(shù)量的1.5倍,兩廠各加工450套防護服,甲廠比乙廠要少用3天.

1)求甲、乙兩廠每天各加工多少套防護服?

2)已知甲、乙兩廠加工這種防護服每天的費用分別是180元和160元,疫情期間,某醫(yī)院緊急需要2400套這種防護服,甲廠單獨加工一段時間后另有安排,剩下任務只能由乙單獨完成.如果總加工費不超過6000元,那么甲廠至少要加工多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年我國許多地方嚴重的“旱情”,為了鼓勵居民節(jié)約用水,區(qū)政府計劃實行兩級收費制,即每月用水量不超過14噸(含14噸)時,每噸按政府補貼優(yōu)惠價收費;每月超過14噸時,超過部分每噸按市場調節(jié)價收費.小英家1月份用水20噸,交水費29元;2月份用水18噸,交水費24元.

1)求每噸水的政府補貼優(yōu)惠價和市場調節(jié)價分別是多少?

2)設每月用水量為x噸,應交水費為y元,寫出yx之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為迎接十二運,某校開設了A:籃球,B:毽球,C:跳繩,D:健美操四種體育活動,為了解學生對這四種體育活動的喜歡情況,在全校范圍內隨機抽取若干名學生,進行問卷調查(每個被調查的同學必須選擇而且只能在4中體育活動中選擇一種).將數(shù)據(jù)進行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).

1)這次調查中,一共查了   名學生:

2)請補全兩幅統(tǒng)計圖:

3)若有3名最喜歡毽球運動的學生,1名最喜歡跳繩運動的學生組隊外出參加一次聯(lián)誼互活動,欲從中選出2人擔任組長(不分正副),求兩人均是最喜歡毽球運動的學生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明隨機調查了若干市民租用公共自行車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖。請根據(jù)圖中信息,解答下列問題:

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922393511583744/1923977001213952/STEM/d5900c7cb9b84a9a89aefef7d82bcf93.png]

(1)這次被調查的總人數(shù)是多少?

(2)試求表示A組的扇形圓心角的度數(shù),并補全條形統(tǒng)計圖;

(3)如果騎自行車的平均速度為12km/h,請估算,在租用公共自行車的市民中,騎車路程不超過6km的人數(shù)所占的百分比。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖正比例函數(shù)yk1x與反比例函數(shù)y的圖象相交于A、B兩點,ACx軸于點C,CDABy軸于點D,連接AD、BD,若SABD6,則下列結論正確的是( 。

A.k1=﹣6B.k1=﹣3C.k2=﹣6D.k2=﹣12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,DAC中點,直線OD與⊙O相交于E,F兩點,P是⊙O外一點,P在直線OD上,連接PA,PC,AF,且滿足∠PCA=ABC

1)求證:PA是⊙O的切線;

2)證明:;

3)若BC=8tanAFP=,求DE的長.

查看答案和解析>>

同步練習冊答案