【題目】如圖,在平面直角坐標(biāo)系中,拋物線交軸、兩點(在的左側(cè)),且,,與軸交于,拋物線的頂點坐標(biāo)為.
(1)求、兩點的坐標(biāo);
(2)求拋物線的解析式;
(3)過點作直線軸,交軸于點,點是拋物線上、兩點間的一個動點(點不與、兩點重合),、與直線分別交于點、,當(dāng)點運動時,是否為定值?若是,試求出該定值;若不是,請說明理由.
【答案】(1)點坐標(biāo),點坐標(biāo);(2);(3)是定值,定值為8
【解析】
(1)由OA、OB的長可得A、B兩點坐標(biāo);
(2)結(jié)合題意可設(shè)拋物線的解析式為,將點C坐標(biāo)代入求解即可;
(3)過點作軸交軸于,設(shè),可用含t的代數(shù)式表示出,,的長,利用,的性質(zhì)可得EF、EG的長,相加可得結(jié)論.
(1)由拋物線交軸于、兩點(在的左側(cè)),且,
,得
點坐標(biāo),點坐標(biāo);
(2)設(shè)拋物線的解析式為,
把點坐標(biāo)代入函數(shù)解析式,得
,
解得,
拋物線的解析式為
;
(3)(或是定值),理由如下:
過點作軸交軸于,如圖
設(shè),
則,,
,
∵,
∴,
∴,
∴
又∵,
∴,
∴,
∴
∴
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(0,7),點B的坐標(biāo)為(0,3),點C的坐標(biāo)為(3,0).
(1)在圖中作出△ABC的外接圓(利用格圖確定圓心);
(2)圓心坐標(biāo)為 ;外接圓半徑r為 ;
(2)若在x軸的正半軸上有一點D,且∠ADB=∠ACB,則點D的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司根據(jù)市場需求銷售A、B兩種型號的凈水器,每臺A型凈水器比每臺B型凈水器進價多200元,用5萬元購進A型凈水器與用4.5萬元購進B型凈水器的數(shù)量相等.
(1)求每臺A型、B型凈水器的進價各是多少元?
(2)該公司計劃用不超過9.8萬元購進A,B兩種型號的凈水器共50臺,其中A型、B型凈水器每臺售價分別為2500元、2180元,設(shè)A型凈水器為x臺.
①求x的取值范圍.
②若公司決定從銷售A型凈水器的利潤中每臺捐獻a(100<a<150)元給貧困村飲水改造愛心工程,求售完這50臺凈水器后獲得的最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:t1,t2是方程t2+2t﹣24=0的兩個實數(shù)根,且t1<t2,拋物線y=x2+bx+c的圖象經(jīng)過點A(t1,0),B(0,t2).
(1)求這個拋物線的解析式;
(2)設(shè)點P(x,y)是拋物線上一動點,且位于第三象限,四邊形OPAQ是以OA為對角線的平行四邊形,求平行四邊形OPAQ的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,當(dāng)平行四邊形OPAQ的面積為24時,是否存在這樣的點P,使OPAQ為正方形?若存在,求出P點坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點M為二次函數(shù)y=x2+2bx+3c圖象的頂點,一次函數(shù)y=kx﹣3(k>0)分別交x軸,y軸于點A,B.
(1)若b=1,c=1,判斷頂點M是否在直線y=2x+1上,并說明理由;
(2)若該二次函數(shù)圖象經(jīng)過點C(1,﹣4),也經(jīng)過點A,B,且滿足kx﹣3<x2+2bx+3c,求該一次函數(shù)解析式,并直接寫出自變量x的取值范圍;
(3)設(shè)點P坐標(biāo)為(m,n)在二次函數(shù)y=x2+2bx+3c上,當(dāng)﹣2≤m≤2時,b﹣24≤n≤2b+4,試問:當(dāng)b≥2或b≤﹣2時,對于該二次函數(shù)中任意的自變量x,函數(shù)值y是否始終大于﹣40?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+mx+m(m>0)的頂點為A,交y軸于點C.
(1)求出點A的坐標(biāo)(用含m的式子表示);
(2)若直線y=﹣x+n經(jīng)過點A,與拋物線交于另一點B,證明:AB的長是定值;
(3)連接AC,延長AC交x軸于點D,作直線AD關(guān)于x軸對稱的直線,與拋物線分別交于E、F兩點.若∠ECF=90°,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年,某貧困戶的家庭年人均純收入為2500元,通過政府產(chǎn)業(yè)扶持,發(fā)展了養(yǎng)殖業(yè)后,到2018年,家庭年人均純收入達到了3600元.
(1)求該貧困戶2016年到2018年家庭年人均純收入的年平均增長率;
(2)若年平均增長率保持不變,2019年該貧困戶的家庭年人均純收入是否能達到4200元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校園內(nèi)有一個由兩個全等的六邊形(邊長為)圍成的花壇,現(xiàn)將這個花壇在原有的基礎(chǔ)上擴建成如圖所示的一個菱形區(qū)域,并在新擴建的部分種上草坪,則擴建后菱形區(qū)域的周長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,在“勾股”章中有這樣一個問題:“今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步面見木?”用今天的話說,大意是:如圖,DEFG是一座邊長為200步(“步”是古代的長度單位)的正方形小城,東門H位于GD的中點,南門K位于ED的中點,出東門15步的A處有一樹木,求出南門多少步恰好看到位于A處的樹木(即點D在直線AC上)?請你計算KC的長為多少步.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com