如圖,矩形ABCD的頂點A、D在拋物線上,B、C在x軸的正半軸上,且矩形始終在拋物線與x軸圍成的區(qū)域里.
(1)設(shè)點A的橫坐標(biāo)為x,試求矩形的周長P關(guān)于變量x的函數(shù)表達(dá)式;
(2)當(dāng)點A運(yùn)動到什么位置時,相應(yīng)矩形的周長最大?最大周長是多少?
(3)在上述這些矩形中是否存在這樣一個矩形,它的周長為7?若存在,求出該矩形的各頂點的坐標(biāo);若不存在,說明理由.

【答案】分析:(1)根據(jù)矩形和拋物線的對稱性可知:BC=AD=OE-2x,因此求矩形的周長,就必須先求出E點的坐標(biāo),根據(jù)已知拋物線的解析式,易求得E點的坐標(biāo),進(jìn)而可得到BC的表達(dá)式,利用矩形的周長公式即可得到關(guān)于P、x的函數(shù)關(guān)系式.
(2)將(1)題所得函數(shù)關(guān)系式化為頂點坐標(biāo)式,進(jìn)而可求得P的最大值及對應(yīng)的x的值.
(3)將P=7代入(1)題的函數(shù)關(guān)系式中,即可求得對應(yīng)的x的值,進(jìn)而可根據(jù)A點坐標(biāo)和矩形各邊長的表達(dá)式求出各頂點的坐標(biāo).
解答:解:(1)令y=0,得
解得x1=0,x2=4,
∴E(4,0);(2分)
=,(2分)
即P=

(2)∵(2分)
∴當(dāng)時,P的最大值為;(2分)
故當(dāng)點A運(yùn)動到(,)時,矩形的周長最大,且最大值為

(3)存在;(1分)
當(dāng)P=7時,得
即4x2-4x-3=0,
解得,;(1分)
∵0<x<2,
;
當(dāng)時,,
,.(2分)
點評:此題主要考查了矩形、拋物線的性質(zhì),二次函數(shù)解析式的確定,二次函數(shù)最值的應(yīng)用等知識,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的對角線AC和BD相交于點O,過點O的直線分別交AD和BC于點E、F,AB=2,BC=3,則圖中陰影部分的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的對角線BD經(jīng)過坐標(biāo)原點,矩形的邊分別平行于坐標(biāo)軸,點C在反比例函數(shù)y=
kx
的圖象上,若點A的坐標(biāo)為(-2,-2),則k的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的一邊AD在x軸上,對角線AC、BD交于點E,過B點的雙曲線y=
kx
(x>0)
恰好經(jīng)過點E,AB=4,AD=2,則K的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•葫蘆島)如圖,矩形ABCD的對角線交于點O,∠BOC=60°,AD=3,動點P從點A出發(fā),沿折線AD-DO以每秒1個單位長的速度運(yùn)動到點O停止.設(shè)運(yùn)動時間為x秒,y=S△POC,則y與x的函數(shù)關(guān)系大致為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD的對角線交于O點,∠AOB=120°,AD=5cm,則AC=
10
10
cm.

查看答案和解析>>

同步練習(xí)冊答案