如圖,A、B是⊙O上的兩點,AC是⊙O的切線,∠OBA=70°,則∠BAC等于


  1. A.
    20°
  2. B.
    10°
  3. C.
    70°
  4. D.
    35°
A
分析:首先根據(jù)等邊對等角即可求得∠OAB的度數(shù),然后根據(jù)切線的性質(zhì),可以得到∠OAC=90°,然后根據(jù)∠BAC=∠OAC-∠OAB求解.
解答:∵OA=OB,
∴∠OAB=∠OBA=70°,
∵AC是⊙O的切線,
∴OA⊥AC,則∠OAC=90°,
∴∠BAC=∠OAC-∠OAB=90°-70°=20°.
故選A.
點評:本題考查了等邊對等角以及切線的性質(zhì)定理,正確求得∠OAB的度數(shù)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,A、D是⊙O上的兩個點,BC是直徑,若∠D=35°,則∠OAC等于(  )
A、65°B、35°C、70°D、55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、已知:如圖,E、F是AB上的兩點,AE=BF,AC∥BD,∠C=∠D.求證:CF=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,A、B是⊙O上的兩點,AC是⊙O的切線,∠OBA=75°,⊙O的半徑為1,則OC的長等于( 。
A、
3
2
B、
2
2
C、
2
3
3
D、
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南京)如圖,A、B是⊙O上的兩個定點,P是⊙O上的動點(P不與A、B重合)、我們稱∠APB是⊙O上關(guān)于點A、B的滑動角.
(1)已知∠APB是⊙O上關(guān)于點A、B的滑動角,
①若AB是⊙O的直徑,則∠APB=
90
90
°;
②若⊙O的半徑是1,AB=
2
,求∠APB的度數(shù);
(2)已知O2是⊙O1外一點,以O(shè)2為圓心作一個圓與⊙O1相交于A、B兩點,∠APB是⊙O1上關(guān)于點A、B的滑動角,直線PA、PB分別交⊙O2于M、N(點M與點A、點N與點B均不重合),連接AN,試探索∠APB與∠MAN、∠ANB之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,E、F是AB上的兩點,AC=BD,AC∥BD,∠C=∠D;
求證:AE=FB.

查看答案和解析>>

同步練習(xí)冊答案