【題目】如圖是兩個(gè)全等的含30°角的直角三角形.
(1)將其相等邊拼在一起,組成一個(gè)沒有重疊部分的平面圖形,請(qǐng)你畫出所有不同的拼接平面圖形的示意圖;
(2)若將(1)中平面圖形分別印制在質(zhì)地、形狀、大小完全相同的卡片上,洗勻后從中隨機(jī)抽取一張,求抽取的卡片上平面圖形為軸對(duì)稱圖形的概率.
【答案】
(1)解:如圖所示:
(2)解:由題意得:軸對(duì)稱圖形有(2),(3),(5),(6),
故抽取的卡片上平面圖形為軸對(duì)稱圖形的概率為: = .
【解析】(1)由于等腰三角形的兩腰相等,且底邊的高線即是底邊的中線,所以把任意相等的兩邊重合組成圖形即可;(2)利用軸對(duì)稱圖形的性質(zhì)得出軸對(duì)稱圖形,進(jìn)而利用概率公式求出即可.
【考點(diǎn)精析】通過靈活運(yùn)用軸對(duì)稱圖形和概率公式,掌握兩個(gè)完全一樣的圖形關(guān)于某條直線對(duì)折,如果兩邊能夠完全重合,我們就說這兩個(gè)圖形成軸對(duì)稱,這條直線就對(duì)稱軸;一般地,如果在一次試驗(yàn)中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P(A)=m/n即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過(﹣1,m2+2m+1)、(0,m2+2m+2)兩點(diǎn),其中m為常數(shù).
(1)求b的值,并用含m的代數(shù)式表示c;
(2)若拋物線y=x2+bx+c與x軸有公共點(diǎn),求m的值;
(3)設(shè)(a,y1)、(a+2,y2)是拋物線y=x2+bx+c上的兩點(diǎn),請(qǐng)比較y2﹣y1與0的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= (x<0)的圖象經(jīng)過點(diǎn)A(﹣1,1),過點(diǎn)A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點(diǎn)P(0,t),過點(diǎn)P作直線OA的垂線l,以直線l為對(duì)稱軸,點(diǎn)B經(jīng)軸對(duì)稱變換得到的點(diǎn)B′在此反比例函數(shù)的圖象上,則t的值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將透明三角形紙片PAB的直角頂點(diǎn)P落在第四象限,頂點(diǎn)A、B分別落在反比例函數(shù)y= 圖象的兩支上,且PB⊥x于點(diǎn)C,PA⊥y于點(diǎn)D,AB分別與x軸,y軸相交于點(diǎn)E、F.已知B(1,3).
(1)k=;
(2)試說明AE=BF;
(3)當(dāng)四邊形ABCD的面積為 時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,點(diǎn)P為AB邊上一動(dòng)點(diǎn),若△PAD與△PBC是相似三角形,則滿足條件的點(diǎn)P的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點(diǎn)M為DE的中點(diǎn),過點(diǎn)E與AD平行的直線交射線AM于點(diǎn)N.
(1)當(dāng)A,B,C三點(diǎn)在同一直線上時(shí)(如圖1),求證:M為AN的中點(diǎn);
(2)將圖1中的△BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,B,E三點(diǎn)在同一直線上時(shí)(如圖2),求證:△ACN為等腰直角三角形;
(3)將圖1中△BCE繞點(diǎn)B旋轉(zhuǎn)到圖3位置時(shí),(2)中的結(jié)論是否仍成立?若成立,試證明之,若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三個(gè)小球分別標(biāo)有﹣2,0,1三個(gè)數(shù),這三個(gè)球除了標(biāo)的數(shù)不同外,其余均相同,將小球放入一個(gè)不透明的布袋中攪勻.
(1)從布袋中任意摸出一個(gè)小球,將小球上所標(biāo)之?dāng)?shù)記下,然后將小球放回袋中,攪勻后再任意摸出一個(gè)小球,再記下小球上所標(biāo)之?dāng)?shù),求兩次記下之?dāng)?shù)的和大于0的概率.(請(qǐng)用“畫樹狀圖”或“列表”等方法給出分析過程,并求出結(jié)果)
(2)從布袋中任意摸出一個(gè)小球,將小球上所標(biāo)之?dāng)?shù)記下,然后將小球放回袋中,攪勻后再任意摸出一個(gè)小球,將小球上所標(biāo)之?dāng)?shù)再記下,…,這樣一共摸了13次.若記下的13個(gè)數(shù)之和等于﹣4,平方和等于14.求:這13次摸球中,摸到球上所標(biāo)之?dāng)?shù)是0的次數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB為等腰三角形,頂點(diǎn)A的坐標(biāo)(2, ),底邊OB在x軸上.將△AOB繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)一定角度后得△A′O′B,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′在x軸上,則點(diǎn)O′的坐標(biāo)為( )
A.( , )
B.( , )
C.( , )
D.( ,4 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com