【題目】如圖,隧道的截面由拋物線ADC和矩形AOBC構(gòu)成,矩形的長OB是12m,寬OA是4m.拱頂D到地面OB的距離是10m.若以O原點(diǎn),OB所在的直線為x軸,OA所在的直線為y軸,建立直角坐標(biāo)系.
(1)畫出直角坐標(biāo)系xOy,并求出拋物線ADC的函數(shù)表達(dá)式;
(2)在拋物線型拱壁E、F處安裝兩盞燈,它們離地面OB的高度都是8m,則這兩盞燈的水平距離EF是多少米?
【答案】(1)畫直角坐標(biāo)系xOy見解析,拋物線ADC的函數(shù)表達(dá)式為:y=﹣(x﹣6)2+10;
(2)兩盞燈的水平距離EF是4米.
【解析】試題分析:
(1)按照題中要求畫出對應(yīng)的坐標(biāo)系;則由題意可得拋物線ADC的頂點(diǎn)坐標(biāo)為(6,10),A點(diǎn)坐標(biāo)為(0,4),由此即可用“待定系數(shù)法”求出拋物線的解析式;
(2)在(1)中所求的拋物線的解析式中,由可得對應(yīng)的一元二次方程,解方程即可得到點(diǎn)E、F的橫坐標(biāo),由此即可求得EF的長;
試題解析:
解:(1)畫出直角坐標(biāo)系xOy,如圖:
由題意可知,拋物線ADC的頂點(diǎn)坐標(biāo)為(6,10),A點(diǎn)坐標(biāo)為(0,4),
可設(shè)拋物線ADC的函數(shù)表達(dá)式為y=a(x﹣6)2+10,
將x=0,y=4代入得:a=,
∴拋物線ADC的函數(shù)表達(dá)式為:y=(x﹣6)2+10.
(2)由y=8得: (x﹣6)2+10=8,
解得:x1=6+,x2=6﹣,
則EF=x1﹣x2=,即兩盞燈的水平距離EF是米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司銷售一種新型節(jié)能產(chǎn)品,現(xiàn)準(zhǔn)備從國內(nèi)和國外兩種銷售方案中選擇一種進(jìn)行銷售.若只在國內(nèi)銷售,銷售價(jià)格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y =x+150,成本為20元/件,無論銷售多少,每月還需支出廣告費(fèi)62500元,設(shè)月利潤為w內(nèi)(元)(利潤=銷售額-成本-廣告費(fèi)).若只在國外銷售,銷售價(jià)格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當(dāng)月銷量為x(件)時(shí),每月還需繳納x2元的附加費(fèi),設(shè)月利潤為w外(元)(利潤=銷售額-成本-附加費(fèi)).
(1)當(dāng)x=1000時(shí),y= 元/件,w內(nèi)= 元;
(2)分別求出w內(nèi),w外與x間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(3)當(dāng)x為何值時(shí),在國內(nèi)銷售的月利潤最大?若在國外銷售月利潤的最大值與在國內(nèi)銷售月利潤的最大值相同,求a的值;
(4)如果某月要將5000件產(chǎn)品全部銷售完,請你通過分析幫公司決策,選擇在國內(nèi)還是在國外銷售才能使所獲月利潤較大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°, AD是∠BAC的平分線,O是AB上一點(diǎn), 以OA為半徑的⊙O經(jīng)過點(diǎn)D.
(1)求證:BC是⊙O切線;
(2)若BD=5,DC=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知頂點(diǎn)為(-3,-6)的拋物線經(jīng)過點(diǎn)(-1,-4),下列結(jié)論中錯(cuò)誤的是( )
A.
B. 若點(diǎn)(-2, ),(-5, ) 在拋物線上,則
C.
D. 關(guān)于的一元二次方程的兩根為-5和-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在東營市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購進(jìn)一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦、每臺電子白板各多少萬元?
(2)根據(jù)學(xué)校實(shí)際,需購進(jìn)電腦和電子白板共30臺,總費(fèi)用不超過30萬元,但不低于28萬元,請你通過計(jì)算求出有幾種購買方案,哪種方案費(fèi)用最低.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山東省泰安市)某學(xué)校將為初一學(xué)生開設(shè)ABCDEF共6門選修課,現(xiàn)選取若干學(xué)生進(jìn)行了“我最喜歡的一門選修課”調(diào)查,將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表(不完整)
根據(jù)圖表提供的信息,下列結(jié)論錯(cuò)誤的是( 。
A. 這次被調(diào)查的學(xué)生人數(shù)為400人
B. 扇形統(tǒng)計(jì)圖中E部分扇形的圓心角為72°
C. 被調(diào)查的學(xué)生中喜歡選修課E、F的人數(shù)分別為80,70
D. 喜歡選修課C的人數(shù)最少
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y= kx+b的圖象與反比例函數(shù)的圖象相交于A,B兩點(diǎn), 其中A點(diǎn)的橫坐標(biāo)與B點(diǎn)的縱坐標(biāo)都是2,如圖:
(1)求這個(gè)一次函數(shù)的解析式;
(2)在y軸是否存在一點(diǎn)P使△OAP為等腰三角形?若存在,請求出符合條件的點(diǎn)P坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1,x2是關(guān)于x的一元二次方程的兩實(shí)數(shù)根.
(1)求m的范圍;
(2)若,求m的值;
(3)已知等腰△ABC的一邊長為7,若x1,x2恰好是△ABC另外兩邊的邊長,求這個(gè)三角形的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com