【題目】如圖所示,某攔水大壩的橫斷面為梯形ABCD,AE、DF為梯形的高,其中迎水坡AB的坡角α=45°,坡長AB= 米,背水坡CD的坡度i=1: (i為DF與FC的比值),則背水坡CD的坡長為米.

【答案】12
【解析】∵AE⊥BC、DF⊥BC,AD//BC,

∴∠DAE=∠AEB=90°,∠AEF=∠DFE=∠DFC=90°,

∴四邊形AEFD是矩形,∴DF=AE,

在Rt△AEB中,∠AEB=90°,AB=6 ,∠ABE=45°,∴AE=AB·sin∠ABE=6,

∴DF=6,

在Rt△DFC中,∠DFC=90°,DF:FC=i=1: =tan∠C, ∴∠C=30°,∴CD=2DF=12,

即背水坡CD的坡長為12米,

故答案為:12.

根據(jù)題意得到四邊形AEFD是矩形,得到對邊相等,根據(jù)三角函數(shù)求出DF的長,根據(jù)坡度求出背水坡CD的坡長.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點OABC內(nèi)一點,連接OB,OC,并將AB,OB,OC,AC的中點D,E,FG依次連接得到四邊形DEFG

1)求證:四邊形DEFG是平行四邊形;

2)若OBOC,∠EOM和∠OCB互余,OM3,求DG的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為個單位長度的小正方形組成的網(wǎng)格中,、正方形、正方形的頂點均在格點上.

1)以格點為原點,建立合適的平面直角坐標系,使得、坐標分別為、,則點的坐標為______,點的坐標為_______;

2)利用面積計算線段________;

3)點為直線上一動點,求的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了拉動內(nèi)需,全國各地汽車購置稅補貼活動在2009年正式開始,某經(jīng)銷商在政策出臺前一個月共售出某品牌汽車的手動型和自動型共960臺,政策出臺后的第一個月售出這兩種型號的汽車共1228臺,其中手動型和自動型汽車的銷售量分別比政策出臺前一個月增長30%25%

1)在政策出臺前一個月,銷售的手動型和自動型汽車分別為多少臺?

2)若手動型汽車每臺價格為8萬元,自動型汽車每臺價格為9萬元.根據(jù)汽車補貼政策,政府按每臺汽車價格的5%給購買汽車的用戶補貼,問政策出臺后的第一個月,政府對這1228臺汽車用戶共補貼了多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點P的坐標為2,a2+1,則點P所在的象限是____;以方程組 的解為坐標的點xy在平面直角坐標系中的位置是__________;在平面直角坐標系中,如果mn0,請寫出點m,|n|可能在的所有象限:____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點N,交AC于點M,連接MB.

(1)若∠ABC=70°,則∠NMA的度數(shù)是   度.

(2)若AB=8cm,MBC的周長是14cm.

①求BC的長度;

②若點P為直線MN上一點,請你直接寫出△PBC周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,拋物線y=ax2+bx+4 與x軸交于點A(﹣3,0)和B(2,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)如圖1,若點D為CB的中點,將線段DB繞點D旋轉(zhuǎn),點B的對應(yīng)點為點G,當點G恰好落在拋物線的對稱軸上時,求點G的坐標;

(3)如圖2,若點D為直線BC或直線AC上的一點,E為x軸上一動點,拋物線

y=ax2+bx+4對稱軸上是否存在點F,使以B,D,F(xiàn),E為頂點的四邊形為菱形?若存在,請求出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】不透明的口袋里裝有紅、黃、藍三種顏色的小球(除顏色不同外,其它都一樣),其中紅球2個,藍球1個,現(xiàn)在從中任意摸出一個紅球的概率為
(1)求袋中黃球的個數(shù);
(2)第一次摸出一個球(不放回),第二次再摸出一個球,請用樹狀圖或列表法求兩次摸出的都是紅球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A+∠B=200°,作∠ADC、BCD的平分線交于點O1稱為第1次操作,作∠O1DC、O1CD的平分線交于點O2稱為第2次操作,作∠O2DC、O2CD的平分線交于點O3稱為第3次操作,,則第5次操作后∠CO5D的度數(shù)是_____

查看答案和解析>>

同步練習冊答案