【題目】如圖,⊙O的直徑AB10cm,弦BC=8cm,∠ACB的平分線交⊙O于點D.連接AD,BD.求四邊形ABCD的面積.

【答案】S四邊形ADBC=49(cm2).

【解析】

根據(jù)直徑所對的角是90°,判斷出△ABC和△ABD是直角三角形,根據(jù)圓周角∠ACB的平分線交⊙OD,判斷出△ADB為等腰直角三角形,根據(jù)勾股定理求出AD、BD、AC的值,再根據(jù)S四邊形ADBC=SABD+SABC進行計算即可.

AB為直徑,

∴∠ADB=90°,

又∵CD平分∠ACB,即∠ACD=BCD,

,

AD=BD

∵直角ABD中,AD=BDAD2+BD2=AB2=102,

AD=BD=5,

SABD=ADBD=×5×5=25(cm2),

在直角ABC中,AC==6(cm),

SABC=ACBC=×6×8=24(cm2),

S四邊形ADBC=SABD+SABC=25+24=49(cm2)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于圓O,∠BOC=120°,AD為圓O的直徑.ADBCP點且PB=1,PC=2,則AC的長為( )

A. B. C. 3D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,弓形ABC中,∠BAC60°,BC2,若點P在優(yōu)弧BAC上由點B向點C移動,記△PBC的內(nèi)心為I,點I隨點P的移動所經(jīng)過的路程為m,則m的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級學(xué)生立定跳遠水平,隨機抽取該年級50名學(xué)生進行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.

學(xué)生立定跳遠測試成績的頻數(shù)分布表

分組

頻數(shù)

1.2≤x<1.6

a

1.6≤x<2.0

12

2.0≤x<2.4

b

2.4≤x<2.8

10

請根據(jù)圖表中所提供的信息,完成下列問題:

(1)表中a   ,b   ,樣本成績的中位數(shù)落在   范圍內(nèi);

(2)請把頻數(shù)分布直方圖補充完整;

(3)該校九年級共有850名學(xué)生,估計該年級學(xué)生立定跳遠成績在2.4≤x<2.8范圍內(nèi)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(m+1x+m2+1)=0有兩個相等的實數(shù)根.

1)求m的值;

2)將y=﹣x2+m+1xm2+1)的圖象向左平移3個單位長度,再向上平移2個單位長度,寫出變化后函數(shù)的表達式;

3)在(2)的條件下,當(dāng)直線y2x+n與變化后的圖象有公共點時,求n24n的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,且AB2CD,EAB的中點,F是邊BC上的動點,EFBD相交于點M

(1)求證:△EDM∽△FBM;

(2)FBC的中點,BD12,求BM的長;

(3)ADBC,BD平分∠ABC,點P是線段BD上的動點,是否存在點P使DPBPBFCD,若存在,求出∠CPF的度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于A、B兩點.

1)利用圖中條件,求反比例函數(shù)的解析式及n的值.

2)求一次函數(shù)的解析式.

3)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(﹣4,2)、B(n,﹣4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求AOB的面積;

(3)觀察圖象,直接寫出不等式kx+b﹣>0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知∠CAB60°,D、E分別是邊ABAC上的點,且∠AED60°,ED+DBCE,∠CDB2CDE,則∠DCB等于_____

查看答案和解析>>

同步練習(xí)冊答案