【題目】如圖,在等邊三角形ABC中,線段AMBC邊上的中線,動點D在直線AM上時,以CD為一邊在CD的下方作等邊三角形CDE,連接BE

1)若點D在線段AM上時,求證:△ADC≌△BEC

2)當動點D在直線AM上時,設直線BE與直線AM的交點為O,

當動點D在線段AM的延長線上時,求當∠ACE為多少度時,點B、D、E在一條直線上;當動點D在直線AM上時,試判斷∠AOB是否為定值?并說明理由.

【答案】1)證明見解析;(2)①150°;②是,理由見解析.

【解析】

1)根據(jù)等邊三角形的性質(zhì)就可以得出AC=AC,DC=EC,∠ACB=DCE=60°,由等式的性質(zhì)就可以∠BCE=ACD,根據(jù)SAS就可以得出ADC≌△BEC;

2)①根據(jù)三角形的內(nèi)角和和等邊三角形的性質(zhì)即可得到結論;②分情況討論,當點D在線段AM上時,由①得:∠AOB=60°;當點D在線段AM的延長線上時,證明ACD≌△BCESAS),得出∠CBE=CAD=30°即可得出答案;當點D在線段MA的延長線上時,證明ACD≌△BCESAS),得出∠CBE=CAD,同理得出∠CAM=30°,求出∠CBE=CAD=150°,得出∠CBO=30°,即可得出答案.

證明:(1)如圖:

∵△ABCDEC都是等邊三角形,

AC=BC,CD=CE,∠ACB=DCE=60°

∴∠ACD+DCB=DCB+BCE,

∴∠ACD=BCE,

ADCBEC中, ,

∴△ACD≌△BCESAS);

2)解:①如圖③

∵△ABCCDE是等邊三角形,

∴∠ACB=DCE=60°,AC=BCCD=CE,

∴∠ACD+DCB=DCB+BCE,

∴∠ACD=BCE

ACDBCE中,,

∴△ACD≌△BCE,

又∵線段AMBC邊上的中線

∴根據(jù)等邊三角形三線合一的性質(zhì)可得,∠CBE=CAD=30°;

又∵點B、D、E在一條直線上且∠E=60°,

∴∠BCE=90°

∴∠ACE=90°+60°=150°;

②當點D在線段AM上時,如圖1所示:

由(1)可知ACD≌△BCE,則∠CBE=CAD=30°
∵△ABC是等邊三角形,線段AMBC邊上的中線
AMBC,

∴∠BMO=90°,

∴∠AOB=90°-CBE=90°-30°=60°

當點D在線段AM的延長線上時,如圖2所示:

∵△ABCDEC都是等邊三角形,

AC=BCCD=CE,∠ACB=DCE=60°

∴∠ACB+DCB=DCB+DCE,

∴∠ACD=BCE,

ACDBCE中,,

∴△ACD≌△BCESAS

∴∠CBE=CAD=30°,

∴∠AOB=90°-CBE=90°-30°=60°;

當點D在線段MA的延長線上時,如圖3所示:

∵△ABCDEC都是等邊三角形,

AC=BC,CD=CE,∠ACB=DCE=60°

∴∠ACD+ACE=BCE+ACE=60°,

∴∠ACD=BCE

ACDBCE,

∴△ACD≌△BCESAS),

∴∠CBE=CAD

同理可得:∠CAM=30°

∴∠CBE=CAD=150°

∴∠CBO=30°,

∴∠AOB=90°-CBO=90°-30°=60°

綜上所述,當動點D在直線AM上時,AOB是定值,AOB=60°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某班數(shù)學興趣小組在學習二次根式時進行了如下題目的探索研究:

1)填空  ;  ;

2)觀察第(1)題的計算結果回答:一定等于  

.不確定

3)根據(jù)(1)、(2)的計算結果進行分析總結的規(guī)律,計算:

4)請你參照數(shù)學興趣小組的研究規(guī)律,化簡:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,DAC邊上一點,∠A=36,∠C=72,∠ADB=108。

求證:(1)AD=BD=BC;

(2)D是線段AC的黃金分割點。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADDEEC,FBC中點,GFC中點,如果△ABC的面積是24平方厘米,則陰影部分面積是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料,再回答問題:有一些幾何圖形可以被某條直線分成面積相等的兩部分,我們將“把一個幾何圖形分成面積相等的兩部分的直線叫做該圖形的二分線”,如:圓的直徑所在的直線是圓的“二分線”,正方形的對角線所在的直線是正方形的“二分線”。

解決下列問題:

(1)菱形的“二分線”可以是____________________________________。

(2)三角形的“二分線”可以是__________________________________。

(3)在下圖中,試用兩種不同的方法分別畫出等腰梯形ABCD的“二分線”.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學興趣小組的活動中,小明進行數(shù)學探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖①位置放置,ADAE在同一直線上,ABAG在同一直線上.

⑴小明發(fā)現(xiàn)DGBE,請你幫他說明理由.

⑵如圖②,小明將正方形ABCD繞點A逆時針旋轉,當點B恰好落在線段DG上時,請你幫他求出此時BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中, 邊AB的垂直平分線交對角線AC于點F,垂足為點E,連結DF,若∠BAD=80°,則∠CDF的度數(shù)為( )

A.80°B.70°C.65°D.60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廠家在甲、乙兩家商場銷售同一商品所獲得的利潤分別為,(單位:元),,與銷售數(shù)量x(單位:件)的函數(shù)關系如圖所示,試根據(jù)圖象解決下列問題:

1)分別求出,關于x的函數(shù)關系式;

2)現(xiàn)廠家分配該商品800件給甲商場,400件給乙商場,當甲、乙商場售完這批商品后,廠家可獲得的總利潤是多少元?

查看答案和解析>>

同步練習冊答案