【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線三點,點A的坐標(biāo)是,點C的坐標(biāo)是,動點P在拋物線上.

1b=___c=____,點B的坐標(biāo)為______;

2)是否存在點P,使得是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,說明理由;

3)過動點PPE垂直y軸于點E,交直線AC于點D,過點Dx軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點P的坐標(biāo).

【答案】1;(2)存在,理由見解析,P的坐標(biāo)是;(3)(,)或(,).

【解析】

1)將點A和點C的坐標(biāo)代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標(biāo);
2)分別過點C和點AAC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1CP2A的解析式,最后再求得P1CP2A與拋物線的交點坐標(biāo)即可;

3)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據(jù)垂線段最短可求得點D的縱坐標(biāo),從而得到點P的縱坐標(biāo),然后由拋物線的解析式可求得點P的坐標(biāo).

解:(1)∵將點A和點C的坐標(biāo)代入拋物線的解析式得: ,解得:b=-2,c=-3
∴拋物線的解析式為y=x2-2x-3
∵令x2-2x-3=0,解得:x1=-1x2=3
∴點B的坐標(biāo)為(-1,0).
故答案為:-2;-3;(-1,0).
2)存在.
理由:如圖所示:

①當(dāng)∠ACP1=90°
由(1)可知點A的坐標(biāo)為(3,0).
設(shè)AC的解析式為y=kx-3
∵將點A的坐標(biāo)代入得3k-3=0,解得k=1,
∴直線AC的解析式為y=x-3
∴直線CP1的解析式為y=-x-3
∵將y=-x-3y=x2-2x-3聯(lián)立解得x1=1,x2=0(舍去),
∴點P1的坐標(biāo)為(1-4).
②當(dāng)∠P2AC=90°時.
設(shè)AP2的解析式為y=-x+b
∵將x=3,y=0代入得:-3+b=0,解得b=3
∴直線AP2的解析式為y=-x+3
∵將y=-x+3y=x2-2x-3聯(lián)立解得x1=-2,x2=3(舍去),
∴點P2的坐標(biāo)為(-2,5).
綜上所述,P的坐標(biāo)是(1-4)或(-25).

3)如圖2所示:連接OD

由題意可知,四邊形OFDE是矩形,則OD=EF
根據(jù)垂線段最短,可得當(dāng)ODAC時,OD最短,即EF最短.
由(1)可知,在RtAOC中,
OC=OA=3,ODAC
DAC的中點.
又∵DFOC,
DF
∴點P的縱坐標(biāo)是
x22x3,解得:x
∴當(dāng)EF最短時,點P的坐標(biāo)是:()或(,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題)用n2×1矩形,鑲嵌一個n矩形,有多少種不同的鑲嵌方案?(n矩形表示矩形的鄰邊是2n

(探究)不妨假設(shè)有an種不同的鑲嵌方案.為探究an的變化規(guī)律,我們采取一般問題特殊化的策略,先從最簡單情形入手,再逐次遞進,最后猜想得出結(jié)論.

探究一:用12×1矩形,鑲嵌一個2×1矩形,有多少種不同的鑲嵌方案?

如圖(1),顯然只有1種鑲嵌方案.所以,a11

探究二:用22×1矩形,鑲嵌一個2×2矩形,有多少種不同的鑲嵌方案?

如圖(2),顯然只有2種鑲嵌方案.所以,a22

探究三:用32×1矩形,鑲嵌一個2×3矩形,有多少種不同的鑲嵌方案?

一類:在探究一每個鑲嵌圖的右側(cè)再橫著鑲嵌22×1矩形,有1種鑲嵌方案;

二類:在探究二每個鑲嵌圖的右側(cè)再豎著鑲嵌12×1矩形,有2種鑲嵌方案;

如圖(3).所以,a31+23

探究四:用42×1矩形,鑲嵌一個2×4矩形,有多少種不同的鑲嵌方案?

一類:在探究二每個鑲嵌圖的右側(cè)再橫著鑲嵌22×1矩形,有   種鑲嵌方案;

二類:在探究三每個鑲嵌圖的右側(cè)再豎著鑲嵌12×1矩形,有   種鑲嵌方案;

所以,a4   

探究五:用52×1矩形,鑲嵌一個2×5矩形,有多少種不同的鑲嵌方案?

(仿照上述方法,寫出探究過程,不用畫圖)

……

(結(jié)論)用n2×1矩形,鑲嵌一個n矩形,有多少種不同的鑲嵌方案?

(直接寫出anan1,an2的關(guān)系式,不寫解答過程).

(應(yīng)用)用102×1矩形,鑲嵌一個2×10矩形,有   種不同的鑲嵌方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮同學(xué)在學(xué)校組織的社會調(diào)查活動中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調(diào)查了若干戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖)

月均用水量(單位:t)

頻數(shù)

百分比

2x<3

2

4%

3x<4

12

24%

4x<5

a

b

5x<6

10

20%

6x<7

c

12%

7x<8

3

6%

8x<9

2

4%

(1)頻數(shù)分布表中a= ,b= .(填百分比),c= ;補全頻數(shù)分布直方圖.

(2)如果家庭月均用水量大于或等于4t且小于7t為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有 戶;

(3)從月均用水量在2x<3,8x<9這兩個范圍內(nèi)的樣本家庭中任意抽取2個,請用列表法或畫樹狀圖求抽取出的2個家庭來自不同范圍的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)交管部門統(tǒng)計,高速公路超速行駛是引發(fā)交通事故的主要原因.我縣某校數(shù)學(xué)課外小組的幾個同學(xué)想嘗試用自己所學(xué)的知識檢測車速,渝黔高速公路某路段的限速是:每小時80千米(即最高時速不超過80千米),如圖,他們將觀測點設(shè)在到公路l的距離為0.1千米的P處.這時,一輛轎車由綦江向重慶勻速直線駛來,測得此車從A處行駛到B處所用的時間為3秒(注:3秒=小時),并測得∠APO59°∠BPO45°.試計算AB并判斷此車是否超速?(精確到0.001).(參考數(shù)據(jù):sin59°≈0.8572,cos59°≈0.5150tan59°≈1.6643

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班為了解學(xué)生一學(xué)期做義工的時間情況,對全班50名學(xué)生進行調(diào)查,按做義工的時間(單位:小時),將學(xué)生分成五類: 類( ),類(),類(),類(),類(),繪制成尚不完整的條形統(tǒng)計圖如圖11.

根據(jù)以上信息,解答下列問題:

1 類學(xué)生有 人,補全條形統(tǒng)計圖;

2類學(xué)生人數(shù)占被調(diào)查總?cè)藬?shù)的 %;

(3)從該班做義工時間在的學(xué)生中任選2人,求這2人做義工時間都在 中的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】桃花中學(xué)計劃購買兩種型號的小黑板,經(jīng)洽談, 購買一塊型小黑板比買一塊型小黑板多元,且購買型小黑板和型小黑板共需元.

1)求購買一塊型小黑板和一塊型小黑板各需要多少元?

2)根據(jù)學(xué)校的實際情況,需購買兩種型號的小黑板共塊,并且購買型小黑板的數(shù)量不少于購買型小黑板的數(shù)量,請問學(xué)校購買這批小黑板最少要多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅行團32人在景區(qū)A游玩,他們由成人、少年和兒童組成.已知兒童10人,成人比少年多12人.

1)求該旅行團中成人與少年分別是多少人?

2)因時間充裕,該團準(zhǔn)備讓成人和少年(至少各1名)帶領(lǐng)10名兒童去另一景區(qū)B游玩.景區(qū)B的門票價格為100元/張,成人全票,少年8折,兒童6折,一名成人可以免費攜帶一名兒童.

①若由成人8人和少年5人帶隊,則所需門票的總費用是多少元?

②若剩余經(jīng)費只有1200元可用于購票,在不超額的前提下,最多可以安排成人和少年共多少人帶隊?求所有滿足條件的方案,并指出哪種方案購票費用最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次數(shù)學(xué)測驗中,一道題滿分3分,老師評分只給整數(shù),即得分只能為0分,1分,2分,3分.李老師為了了解學(xué)生得分情況和試題的難易情況,對初三(1)班所有學(xué)生的試題進行了分析整理,并繪制了兩幅尚不完整的統(tǒng)計圖,如圖所示.

解答下列問題:

1m= n= ,并補全條形統(tǒng)計圖;

2)在初三(1)班隨機抽取一名學(xué)生的成績,求抽中的成績?yōu)榈梅直姅?shù)的概率;

3)根據(jù)右側(cè)小知識,通過計算判斷這道題對于該班級來說,屬于哪一類難度的試題?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,D、E分別在邊AB、AC上,下列條件中,不能確定ADE∽△ACB的是(  )

A. AED=∠B B. BDE+C180°

C. ADBCACDE D. ADABAEAC

查看答案和解析>>

同步練習(xí)冊答案