【題目】如圖,AB為⊙O的直徑,點(diǎn)CAB上方的圓上一動(dòng)點(diǎn),過點(diǎn)C作⊙O的切線l,過點(diǎn)A作直線l的垂線AD,交⊙O于點(diǎn)D,連接OC,CD,BC,BD,且BDOC交于點(diǎn) E

1)求證:△CDE≌△CBE;

2)若AB6,填空:

①當(dāng)的長度是   時(shí),△OBE是等腰三角形;

②當(dāng)BC   時(shí),四邊形OADC為菱形.

【答案】1)見解析;(2)①π;②3

【解析】

1)由已知可得CEBD,則可知DEBE,所以△CDE≌△CBESAS);

2)①連接OD,由已知可證明△ABD是等腰直角三角形,求得∠COD45°,即可求的長度;②由已知可得OAOCADCD3,再由△CDE≌△CBE,則CDBC

解:(1)∵過點(diǎn)C作⊙O的切線l,

OCl,

ADl,

OCAD,

AB為⊙O的直徑,點(diǎn)CAB上方的圓上一動(dòng)點(diǎn),

ADBD,

BDOC

DEBE,

∴△CDE≌△CBESAS);

2)①連接OD,

當(dāng)△OBE是等腰三角形時(shí),

BEOE

OEBE,

∴∠OBE=∠EOB45°,

ADOC

∴∠A45°,

∴△ABD是等腰直角三角形,

∴∠COD45°,

AB6,

AO3

的長度=π,

故答案為π;

②∵四邊形OADC為菱形,

OAOCADCD3,

∵△CDE≌△CBE

CDBC,

BC3,

故答案為3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正ABC的邊長為2,過點(diǎn)B的直線lAB,且ABCA′BC′關(guān)于直線l對(duì)稱,D為線段BC′上一動(dòng)點(diǎn),則AD+CD的最小值是( )

A. 4 B. 3 C. 2 D. 2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在解決數(shù)學(xué)問題時(shí),我們常常從特殊入手,猜想結(jié)論,并嘗試發(fā)現(xiàn)解決問題的策略與方法.

(問題提出)

求證:如果一個(gè)定圓的內(nèi)接四邊形對(duì)角線互相垂直,那么這個(gè)四邊形的對(duì)邊的平方和是一個(gè)定值.

(從特殊入手)

我們不妨設(shè)定圓O的半徑是R,O的內(nèi)接四邊形ABCD中,ACBD.

請(qǐng)你在圖①中補(bǔ)全特殊殊位置時(shí)的圖形,并借助于所畫圖形探究問題的結(jié)論.

(問題解決)

已知:如圖②,定圓⊙O的半徑是R,四邊形ABCD是⊙O的內(nèi)接四邊形, ACBD.

求證:

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=4,點(diǎn)A在⊙O上,∠AMN=30°,B的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C90°,∠B30°,AC.按以下步驟作圖:

①以A為圓心,以小于AC長為半徑畫弧,分別交AC、AB于點(diǎn)ED;

②分別以D、E為圓心,以大于DE長為半徑畫弧,兩弧相交于點(diǎn)P;

③連接APBC于點(diǎn)F

那么BF的長為(  )

A.B.3C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yax2+bx3與直線yx+3交于點(diǎn)Am,0)和點(diǎn)B2,n),與y軸交于點(diǎn)C

1)求mn的值及拋物線的解析式;

2)在圖1中,把AOC平移,始終保持點(diǎn)A的對(duì)應(yīng)點(diǎn)P在拋物線上,點(diǎn)C,O的對(duì)應(yīng)點(diǎn)分別為M,N,連接OP,若點(diǎn)M恰好在直線yx+3上,求線段OP的長度;

3)如圖2,在拋物線上是否存在點(diǎn)Q(不與點(diǎn)C重合),使QABABC的面積相等?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=45°,點(diǎn)M,N在邊OA上,OM=x,ON=x+4,點(diǎn)P是邊OB上的點(diǎn).若使點(diǎn)P,M,N構(gòu)成等腰三角形的點(diǎn)P恰好有三個(gè),則x的值是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=AD,∠C=120°,點(diǎn)E在⊙O上.

(1)求∠AED的度數(shù);

(2)若⊙O的半徑為2,則的長為多少?

(3)連接OD,OE,當(dāng)∠DOE=90°時(shí),AE恰好是⊙O的內(nèi)接正n邊形的一邊,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACE,ACD均為直角三角形,∠ACE=90°,ADC=90°,AECD相交于點(diǎn)P,以CD為直徑的⊙O恰好經(jīng)過點(diǎn)E,并與ACAE分別交于點(diǎn)B和點(diǎn)F.

(1)求證:∠ADF=EAC.

(2)若PC=PA,PF=1,求AF的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案