【題目】在一塊長(zhǎng)方形鏡面玻璃的四周,鑲上與它的周長(zhǎng)相等的邊框,制成一面鏡子.鏡子的長(zhǎng)與寬的比是3:1.已知鏡面玻璃的價(jià)格是每平方米100元,邊框的價(jià)格是每米20元,另外制作這面鏡子還需加工費(fèi)55元.如果制作這面鏡子共花了210元,求這面鏡子的長(zhǎng)是__________,寬是___________

【答案】1.5; 0.5

【解析】

根據(jù)題意設(shè)這面鏡子的寬為x米,則長(zhǎng)為3x米,由邊框的錢(qián)數(shù)加上玻璃的錢(qián)數(shù)加上加工費(fèi)等于210元列出方程解出即可.

設(shè)這面鏡子的寬為x米,則長(zhǎng)為3x米,由題意得

(x+3x)×2×20+3x×x×100+55=210

解得:x=0.5

3x=1.5m),

答:這面鏡子的長(zhǎng)是1.5m,寬是0.5m,

故答案為:1.50.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(知識(shí)鏈接)連結(jié)三角形兩邊中點(diǎn)的線段,叫做三角形的中位線.

(動(dòng)手操作)小明同學(xué)在探究證明中位線性質(zhì)定理時(shí),是沿著中位線將三角形剪開(kāi)然后將它們無(wú)縫隙、無(wú)重疊的拼在一起構(gòu)成平行四邊形,從而得出:三角形中位線平行于第三邊且等于第三邊的一半.

(性質(zhì)證明)小明為證明定理,他想利用三角形全等、平行四邊形的性質(zhì)來(lái)證明.請(qǐng)你幫他完成解題過(guò)程(要求:畫(huà)出圖形,根據(jù)圖形寫(xiě)出已知、求證和證明過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線y=ax+bx+4x軸交于點(diǎn)A(-3,0)和B(2,0),與y軸交于點(diǎn)C.

(1)求拋物線的解析式;

(2)如圖1,若點(diǎn)DCB的中點(diǎn),將線段DB繞點(diǎn)D旋轉(zhuǎn),點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)G,當(dāng)點(diǎn)G恰好落在拋物線的對(duì)稱(chēng)軸上時(shí),求點(diǎn)G的坐標(biāo);

(3)如圖2,若點(diǎn)D為直線BC或直線AC上的一點(diǎn),Ex軸上一動(dòng)點(diǎn),拋物線y=ax+bx+4對(duì)稱(chēng)軸上是否存在點(diǎn)F,使以B,D,F(xiàn),E為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平形行四邊形ABCD中,連接對(duì)角線BD,AB=BD,E為線段AD上一點(diǎn),AE=BE

(1)如圖1,若∠ABE=30,CD=,求DE的長(zhǎng);

(2)如圖2,F(xiàn)為線段BE上一點(diǎn),DE=BF,連接AF、DF,DF的延長(zhǎng)線交AB于點(diǎn)G,若AF=2DE,求證:DF=2GF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,C、P上兩點(diǎn),AB13,AC5

1)如圖(1),若點(diǎn)P的中點(diǎn),求PA的長(zhǎng);

2)如圖(2),若點(diǎn)P的中點(diǎn),求PA得長(zhǎng) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,則下列結(jié)論: ①a+b+c0;②a–b+c0;③b+2a0;④abc0,其中正確的是 (填寫(xiě)正確的序號(hào))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AC=2,BC=4,ACx軸,A、B兩點(diǎn)在反比例函數(shù)y=(x>0)的圖象上,延長(zhǎng)CAy軸于點(diǎn)D,AD=1.

(1)求該反比例函數(shù)的解析式;

(2)將ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到EBF,使點(diǎn)C落在x軸上的點(diǎn)F處,點(diǎn)A的對(duì)應(yīng)點(diǎn)為E,求旋轉(zhuǎn)角的度數(shù)和點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,ACBD交于點(diǎn)O,BDAD于點(diǎn)D,將ABD沿BD翻折得到EBD,連接EC、EB

1)求證:四邊形DBCE是矩形;

2)若BD=4AD=3,求點(diǎn)OAB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,拋物線的頂點(diǎn)D的坐標(biāo)為(1,-4),且與y軸交于點(diǎn)

C0,3

求該函數(shù)的關(guān)系式;

求改拋物線與x軸的交點(diǎn)A,B的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案