【題目】如圖所示,直線y=x﹣3分別與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,M是OB上一點(diǎn),若將△ABM沿AM折疊,點(diǎn)B恰好落在x軸上的點(diǎn)B′處,則直線B′M的解析式為_____.
【答案】y=﹣x﹣.
【解析】
根據(jù)直線求得點(diǎn)A和B的坐標(biāo),然后求得AB的長,進(jìn)一步求得B′的坐標(biāo),再由待定系數(shù)法就能求出AMd的解析式,進(jìn)而求得點(diǎn)M的坐標(biāo),然后根據(jù)待定系數(shù)法求得直線B′M的解析式.
解:當(dāng)x=0時,即B(0,﹣3),
當(dāng)y=0時,x=4,即A(4,0),
所以AB=AB′=5,即B′(﹣1,′0),
因?yàn)辄c(diǎn)B與B′關(guān)于AM對稱,
所以BB′的中點(diǎn)為,即在直線AM上,
設(shè)直線AM的解析式為y=kx+b,把;(4,0),
代入可得
令x=0,則
所以
設(shè)直線B′M的解析式為y=mx+n,把B′(﹣1,0),
代入可得
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A和點(diǎn)F,點(diǎn)B和點(diǎn)E分別是反比例函數(shù)y= 圖象在第一象限和第三象限上的點(diǎn),過點(diǎn)A,B作AC⊥x軸,BD⊥x軸,垂足分別為點(diǎn)C、D,CD=6,且AF=FC,DE=BE,已知四邊形ADCF的面積是四邊形BCDE的面積的2倍,則OC的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,以Rt△ABC的三邊為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中陰影部分的面積為( ).
A. 9 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是一個六角星的紙板,其中六個銳角都為60°,六個鈍角都為120°,每條邊都相等,現(xiàn)將該紙板按圖(2)切割,并無縫隙無重疊地拼成矩形ABCD.若六角星紙板的面積為9 cm2 , 則矩形ABCD的周長為( )
A.18cm
B.8 cm
C.(2 +6)cm
D.(6 +6)cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,B為OM上一點(diǎn),BA⊥ON于A,四邊形ABCD為正方形,P為射線BM上一動點(diǎn),連結(jié)CP,將CP繞點(diǎn)C順時針方向旋轉(zhuǎn)90°得CE,連結(jié)BE,若AB=4,則BE的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)8﹣(﹣2)
(2)1﹣6+(﹣20)﹣(﹣5)
(3)﹣4×(﹣3)2+5×(﹣2)﹣6
(4)(1﹣+)×(﹣48)
(5)﹣22+[(﹣4)2﹣(1﹣3)×3]
(6)(﹣125)÷(﹣5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B兩地相距60km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中表示兩人離A地的距離s(km)與時間t(h)的關(guān)系,請結(jié)合圖象解答下列問題:
(1)表示乙離A地的距離與時間關(guān)系的圖象是 (填或);
(2)甲的速度是 km/h,乙的速度是 km/h;
(3)甲出發(fā)多少小時兩人恰好相距5km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級(1)班的宣傳委員在辦黑板報時,采用了下面的圖案作為邊框,其中每個黑色六邊形與6個白色六邊形相鄰.若一段邊框上有45個黑色六邊形,則這段邊框共有白色六邊形( 。
A. 182個 B. 180個 C. 272個 D. 270個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com