精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,DAB的中點,ECD的中點, 過點CCF//ABAE的延長線于點F,連接BF

(1) 求證:DBCF;

(2) 如果ACBC,試判斷四邊形BDCF的形狀,并證明你的結論.

【答案】(1)證明見解析;(2)四邊形BDCF是矩形,理由見解析.

【解析】試題分析:(1)根據CF∥AB,可知∠DAE=∠CFE,得出△ADE≌△FCE,再根據等量代換可知DB=CF,

2)根據DB=CFDB∥CF,可知四邊形BDCF為平行四邊形,再根據AC=BC,AD=DB,得出四邊形BDCF是矩形.

試題解析:(1)證明:∵CF∥AB,

∴∠DAE=∠CFE,

△ADE△FCE中,

∴△ADE≌△FCEAAS),

∴AD=CF

∵AD=DB,

∴DB=CF;

2)四邊形BDCF是矩形,

證明:∵DB=CF,DB∥CF,

四邊形BDCF為平行四邊形,

∵AC=BC,AD=DB,

∴CD⊥AB,

平行四邊形BDCF是矩形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在正方形紙片ABCD中,對角線AC、BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合.展開后,折痕DE分別交AB、AC于點E、G.連接GF.下列結論:①∠AGD=112.5°;AD:AE=2;SAGD=SOGD;④四邊形AEFG是菱形;⑤BE=2 OG。其中正確結論的序號是______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】先化簡,再求值:

(1)3x+2(x2-y)-3(2x2+x-y),其中x=,y=-3;

(2)3a2c-[2ab2-2(abc-ab2)+3a2c]-abc,其中a=-,b=2,c=3.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在周長為12的菱形ABCD,AE=1,AF=2,P為對角線BD上一動點,EP+FP的最小值為( )

A. 5 B. 8 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有一個直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,你能求出CD的長嗎?若能,請給出求解過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市種植某種綠色蔬菜,全部用來出口.為了擴大出口規(guī)模,該市決定對這種蔬菜的種植實行政府補貼,規(guī)定每種植﹣畝這種蔬菜一次性補貼菜農若干元.經調查,種植畝數y(畝)與補貼數額x(元)之間大致滿足如圖1所示的一次函數關系.隨著補貼數額x的不斷增大,出口量也不斷增加,但每畝蔬菜的收益z(元)會相應降低,且z與x之間也大致滿足如圖2所示的一次函數關系.
(1)在政府未出臺補貼措施前,該市種植這種蔬菜的總收益額為多少?
(2)分別求出政府補貼政策實施后,種植畝數y和每畝蔬菜的收益z與政府補貼數額x之間的函數關系式;
(3)要使全市這種蔬菜的總收益w(元)最大,政府應將每畝補貼數額x定為多少?并求出總收益w的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點D,點E在⊙O上,且DE=DA,AE與BC相交于點F.
(1)求證:FD=DC;
(2)若AE=8,DE=5,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在數、、、…、、的每個數字前添上“+”“-”,使得算出的結果是一個最小的非負數,請寫出符合條件的式子:________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】現有A,B兩種商品,買2件A商品和1件B商品用了90元,買3件A商品和2件B商品用了160元.
(1)求A,B兩種商品每件各是多少元?
(2)如果小亮準備購買A,B兩種商品共10件,總費用不超過350元,但不低于300元,問有幾種購買方案,哪種方案費用最低?

查看答案和解析>>

同步練習冊答案