【題目】如圖,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△ADE,其中點(diǎn)B、C分別與點(diǎn)D、E對(duì)應(yīng),如果B、D、C三點(diǎn)恰好在同一直線上,那么下列結(jié)論錯(cuò)誤的是( )
A.∠ACB=∠AEDB.∠BAD=∠CAE
C.∠ADE=∠ACED.∠DAC=∠CDE
【答案】D
【解析】
利用旋轉(zhuǎn)的性質(zhì)直接對(duì)A選項(xiàng)進(jìn)行判斷;利用旋轉(zhuǎn)的性質(zhì)得,再利用角的和差可得,則可對(duì)B選項(xiàng)進(jìn)行判斷;利用旋轉(zhuǎn)的性質(zhì)得,然后根據(jù)等腰三角形頂角相等時(shí)底角相等得到,則,則可對(duì)C選項(xiàng)進(jìn)行判斷;先判斷,而不能確定等于,則可對(duì)D選項(xiàng)進(jìn)行判斷.
∵繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到
∴,則A選項(xiàng)的結(jié)論正確
由旋轉(zhuǎn)的性質(zhì)可得
即
∴,則B選項(xiàng)的結(jié)論正確
∵繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到
∴
和都是等腰三角形
∵
∴
∴,則C選項(xiàng)的結(jié)論正確
∵,即
又
∴
∵AD不能確定平分
∴不能確定等于
∴不能確定等于,則D選項(xiàng)的結(jié)論錯(cuò)誤
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為4,P 為BC上的動(dòng)點(diǎn),連接PA,作PQ⊥PA,PQ交CD于Q,連接AQ ,則AQ的最小值是( )
A.5B.C.D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+3與x軸和y軸的正半軸分別交于A、B兩點(diǎn),且OA=OB,拋物線的頂點(diǎn)為M,聯(lián)結(jié)AB、AM.
(1)求這條拋物線的表達(dá)式和點(diǎn)M的坐標(biāo);
(2)求sin∠BAM的值;
(3)如果Q是線段OB上一點(diǎn),滿足∠MAQ=45°,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=BC=5,tan∠ABC=.
(1)求邊AC的長;
(2)設(shè)邊BC的垂直平分線與邊AB的交點(diǎn)為D,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,延長AD至點(diǎn)E,使DE=AD,連接BD.
(1)求證:四邊形BCED是平行四邊形;
(2)若DA=DB=2,cosA=,求點(diǎn)B到點(diǎn)E的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中(如圖),已知拋物線y=﹣+bx+c(其中b、c是常數(shù))經(jīng)過點(diǎn)A(﹣2,﹣2)與點(diǎn)B(0,4),頂點(diǎn)為M.
(1)求該拋物線的表達(dá)式與點(diǎn)M的坐標(biāo);
(2)平移這條拋物線,得到的新拋物線與y軸交于點(diǎn)C(點(diǎn)C在點(diǎn)B的下方),且△BCM的面積為3.新拋物線的對(duì)稱軸l經(jīng)過點(diǎn)A,直線l與x軸交于點(diǎn)D.
①求點(diǎn)A隨拋物線平移后的對(duì)應(yīng)點(diǎn)坐標(biāo);
②點(diǎn)E、G在新拋物線上,且關(guān)于直線l對(duì)稱,如果正方形DEFG的頂點(diǎn)F在第二象限內(nèi),求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑, OE垂直于弦BC,垂足為F,OE交⊙O于點(diǎn)D,且∠CBE=2∠C.
(1)求證:BE與⊙O相切;
(2)若DF=9,tanC=,求直徑AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線直線與雙曲線交于A、B兩點(diǎn),與x軸交于點(diǎn)C,點(diǎn)A的縱坐標(biāo)為6,點(diǎn)B的坐標(biāo)為(﹣3,﹣2).
(1)求直線和雙曲線的解析式;
(2)求點(diǎn)C的坐標(biāo),并結(jié)合圖象直接寫出時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),為,點(diǎn)A的坐標(biāo)是,,把繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)后,得到,則的外接圓圓心坐標(biāo)是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com