【題目】如圖,菱形ABCD邊長為4,∠A60°,MAD邊的中點(diǎn),NAB邊上一動點(diǎn),將△AMN沿MN所在的直線翻折得到△AMN,連接AC,則AC的最小值是(

A.2B.+1C.22D.3

【答案】C

【解析】

根據(jù)題意,在折疊過程中A′在以M為圓心、AD為直徑的圓上的弧AD上運(yùn)動,當(dāng)AC取最小值時(shí),由兩點(diǎn)之間線段最短知此時(shí)M、A′、C三點(diǎn)共線,得出A′的位置,過點(diǎn)MMHDC于點(diǎn)F,再利用含30°的直角三角形的性質(zhì)以及勾股定理求出MC的長,進(jìn)而求出AC的長即可.

解:如圖所示,∵MA′是定值,AC長度取最小值時(shí),即A′在MC上.

過點(diǎn)MMHDC于點(diǎn)F,
∵在邊長為4的菱形ABCD中,∠A=60°,MAD的中點(diǎn),
2MD=AD=CD=4,∠HDM=A=60°,
MD=2,∠HMD=30°,

HD=MD=1,∴HM==,CH=CD+DH=5

,

AC=MC-MA=2-2;
故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,有一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,其盤面分為4等份,在每一等份分別標(biāo)有對應(yīng)的數(shù)字2,3,4,5.小明打算自由轉(zhuǎn)動轉(zhuǎn)盤10次,現(xiàn)已經(jīng)轉(zhuǎn)動了8次,每一次停止后,小明將指針?biāo)笖?shù)字記錄如下:

次數(shù)

1

2

3

4

5

6

7

8

9

10

數(shù)字

3

5

2

3

3

4

3

5

1)求前8次的指針?biāo)笖?shù)字的平均數(shù).

2)小明繼續(xù)自由轉(zhuǎn)動轉(zhuǎn)盤2次,判斷是否可能發(fā)生“這10次的指針?biāo)笖?shù)字的平均數(shù)不小于3.3,且不大于3.5”的結(jié)果?若有可能,計(jì)算發(fā)生此結(jié)果的概率,并寫出計(jì)算過程;若不可能,說明理由.(指針指向盤面等分線時(shí)為無效轉(zhuǎn)次.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)藝術(shù)節(jié)期間,向?qū)W校學(xué)生征集書畫作品.九年級美術(shù)李老師從全年級14個班中隨機(jī)抽取了A、B、CD四個班,對征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了如下兩幅不完整的統(tǒng)計(jì)圖.

1)李老師采取的調(diào)查方式是______________(填普查抽樣調(diào)查),李老師所調(diào)查的4個班征集到作品共_________件,其中B班征集到作品_______________件.

2)如果全年級參展作品中有4件獲得一等獎,其中有2名作者是男生,2名作者是女生.現(xiàn)在要抽取兩人去參加學(xué)?偨Y(jié)表彰座談會,求恰好抽中一男一女的概率.(要求用樹狀圖或列表法寫出分析過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展以“學(xué)習(xí)朱子文化,弘揚(yáng)理學(xué)思想”為主題的讀書月活動,并向?qū)W生征集讀后感,學(xué)校將收到的讀后感篇數(shù)按年級進(jìn)行統(tǒng)計(jì),繪制了以下兩幅統(tǒng)計(jì)圖(不完整)

據(jù)圖中提供的信息完成以下問題

(1)扇形統(tǒng)計(jì)圖中“八年級”對應(yīng)的圓心角是   °,并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)經(jīng)過評審,全校有4篇讀后感榮獲特等獎,其中有一篇來自七年級,學(xué)校準(zhǔn)備從特等獎讀后感中任選兩篇在校廣播電臺上播出,請利用畫樹狀圖或列表的方法求出七年級特等獎讀后感被校廣播電臺播出的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某工藝廠為配合北京奧運(yùn),設(shè)計(jì)了一款成本為20元∕件的工藝品投放市場進(jìn)行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價(jià)x(元/件)

30

40

50

60

每天銷售量y(件)

500

400

300

200

(1)把上表中x、y的各組對應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;

(2)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價(jià)﹣成本總價(jià))

(3)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高不能超過45元/件,那么銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為倡導(dǎo)節(jié)能環(huán)保,降低能源消耗,提倡環(huán)保型新能源開發(fā),造福社會.某公司研發(fā)生產(chǎn)一種新型智能環(huán)保節(jié)能燈,成本為每件40元.市場調(diào)查發(fā)現(xiàn),該智能環(huán)保節(jié)能燈每件售價(jià)y(元)與每天的銷售量為x(件)的關(guān)系如圖,為推廣新產(chǎn)品,公司要求每天的銷售量不少于1000件,每件利潤不低于5元.

1)求每件銷售單價(jià)y(元)與每天的銷售量為x(件)的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;

2)設(shè)該公司日銷售利潤為P元,求每天的最大銷售利潤是多少元?

3)在試銷售過程中,受國家政策扶持,毎銷售一件該智能環(huán)保節(jié)能燈國家給予公司補(bǔ)貼mm≤40)元.在獲得國家每件m元補(bǔ)貼后,公司的日銷售利潤隨日銷售量的增大而增大,則m的取值范圍是   (直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,ΔECG是等腰直角三角形,∠BGE的平分線過點(diǎn)DBE H,OEG的中點(diǎn),對于下面四個結(jié)論:①GHBE;②OHBG,且;③;④△EBG的外接圓圓心和它的內(nèi)切圓圓心都在直線HG上.其中表述正確的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利達(dá)經(jīng)銷店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費(fèi)提供貨源,待貨物售出后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理).當(dāng)每噸售價(jià)為260元時(shí),月銷售量為45噸.該經(jīng)銷店為提高經(jīng)營利潤,準(zhǔn)備采取降價(jià)的方式進(jìn)行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當(dāng)每噸售價(jià)每下降10元時(shí),月銷售量就會增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費(fèi)用100元.

1)當(dāng)每噸售價(jià)是240元時(shí),計(jì)算此時(shí)的月銷售量;

2)在遵循“薄利多銷”的原則下,問每噸材料售價(jià)為多少時(shí),該經(jīng)銷店的月利潤為9000元?

3)小靜說:“當(dāng)月利潤最大時(shí),月銷售額也最大.”你認(rèn)為對嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC邊上的一個動點(diǎn),連接AD,過點(diǎn)C作CE⊥AD于E,連接BE,在點(diǎn)D變化的過程中,線段BE的最小值是__cm.

查看答案和解析>>

同步練習(xí)冊答案