如圖,在梯形ABCD中,AD∥BC,BC⊥AB,AD=3,BC=4,E點在AB上,且AE=2,∠CED=90°.
求CD的長.

【答案】分析:首先根據(jù)有兩角對應(yīng)相等的三角形相似,證得△AED∽△BCE,然后根據(jù)相似三角形的對應(yīng)邊成比例,求得BE的長,在過D作DF⊥BC,交BC于F,則DF∥AB,即可得四邊形ABFD為矩形,根據(jù)矩形的性質(zhì)與勾股定理,即可求得CD的長.
解答:解:如圖,在△AED和△BCE中,
∵AD∥BC,BC⊥AB,
∴AD⊥AB,
∴∠A=∠B=90°,(1分)
∵∠CED=90°,
∴∠1+∠2=90°,
∵∠1+∠3=90°,
∴∠2=∠3,(1分)
∴△AED∽△BCE,(3分)

,
即BE=6,
過D作DF⊥BC,交BC于F,則DF∥AB,(6分)
∴四邊形ABFD為矩形,
∴DF=AB=2+6=8,F(xiàn)C=BC-BF=BC-AD=4-3=1,
∴CD2=DF2+FC2=82+1=65,
∴CD=.(8分)
點評:此題考查了梯形的性質(zhì),相似三角形的判定與性質(zhì),矩形的判定與性質(zhì),以及勾股定理的應(yīng)用等知識.此題綜合性較強(qiáng),難度較大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用與輔助線的作法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( �。�
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹