【題目】已知,如圖1為正方形的中點(diǎn),,連接

1)求證:①

;

2)如圖2,若,作,分別交,于點(diǎn),,求的長(zhǎng).

【答案】1)①見詳解,②見詳解;(22

【解析】

1)①由為正方形的中點(diǎn),得BE=,易證DFC~CBE,得,進(jìn)而即可得到結(jié)論;②過點(diǎn)FFMAD,垂足為點(diǎn)M,CF=a,則DF=2aDC=,用含a得代數(shù)式表示出AF的長(zhǎng),進(jìn)而得到AF= AB,即可得到結(jié)論;

2)過點(diǎn)FFMAD,垂足為點(diǎn)M,由第(1)②小題,可知:a=,得到DG=MF=,由余弦函數(shù)的定義得,從而得到DH,AHEH的長(zhǎng),結(jié)合,即可求解.

1)①∵為正方形的中點(diǎn),

BE=

∵在正方形ABCD中,

∴∠CDF+DCF=90°,∠DCF+ECB=90°,

∴∠CDF=ECB,

又∵∠DFC=CBE=90°,

DFC~CBE,

=,即:;

②過點(diǎn)FFMAD,垂足為點(diǎn)M,

FMCD,

∴∠MFD=CDF

∴在Rt MFDRt CDF中,tanMFD=tanCDF==

設(shè)CF=a,則DF=2a,DC=,

tanMFD==,DF2=MD2+MF2,

MDMFDF=12,

MD==MF=2MD=,

AD= DC=

AM= AD- MD=,

AF==,

AB=CD=,

AF= AB

;

2)過點(diǎn)FFMAD,垂足為點(diǎn)M,

由(1)②小題可知:,即:a=

MF==,AD=AB=CD=8,

AB=AF=AD,,FMAD

DG=MF=,

cosADH=

DH===10,

AH=,

AE=AB=4

EH=6-4=2,

ABCD,

,即:,

HP=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20191017日是我國第6個(gè)扶貧日,也是第27個(gè)國際消除貧困日.為組織開展好銅陵市2019年扶貧日系列活動(dòng),促進(jìn)我市貧困地區(qū)農(nóng)產(chǎn)品銷售,增加貧困群眾收入,加快脫貧攻堅(jiān)步伐.我市決定將一批銅陵生姜送往外地銷售.現(xiàn)有甲、乙兩種貨車,已知甲種貨車比乙種貨車每輛車多裝20箱生姜,且甲種貨車裝運(yùn)1000箱生姜所用車輛與乙種貨車裝運(yùn)800箱生姜所用車輛相等.

1)求甲、乙兩種貨車每輛車可裝多少箱生姜?

2)如果這批生姜有1520箱,用甲、乙兩種汽車共16輛來裝運(yùn),甲種車輛剛好裝滿,乙種車輛最后一輛只裝了40箱,其它裝滿,求甲、乙兩種貨車各有多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊邊長(zhǎng)為,點(diǎn)的內(nèi)心,,繞點(diǎn)旋轉(zhuǎn),分別交線段、、兩點(diǎn),連接,給出下列四個(gè)結(jié)論:①形狀不變;②的面積最小不會(huì)小于四邊形的面積的四分之一;③四邊形的面積始終不變;④周長(zhǎng)的最小值為.上述結(jié)論中正確的個(gè)數(shù)是( )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,AB2,AD4,將矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至矩形EGCF(其中E、GF分別與A、B、D對(duì)應(yīng)).

1)如圖1,當(dāng)點(diǎn)G落在AD邊上時(shí),直接寫出AG的長(zhǎng)為   ;

2)如圖2,當(dāng)點(diǎn)G落在線段AE上時(shí),ADCG交于點(diǎn)H,求GH的長(zhǎng);

3)如圖3,記O為矩形ABCD對(duì)角線的交點(diǎn),S為△OGE的面積,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勒洛三角形是以等邊三角形每個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑,在另兩個(gè)頂點(diǎn)間作一段弧,三段弧圍成的曲邊三角形,如圖所示,若等邊三角形的邊長(zhǎng)為1,則該勒洛三角形的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,對(duì)角線AC、BD交于O點(diǎn),DE∥ACCE∥BD

1)求證:四邊形OCED為矩形;

2)在BC上截取CFCO,連接OF,若AC16,BD12,求四邊形OFCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABOC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊BOx軸的負(fù)半軸上,,頂點(diǎn)C的坐標(biāo)為x反比例函數(shù)的圖象與菱形對(duì)角線AO交于點(diǎn)D,連接BD,當(dāng)軸時(shí),k的值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,3個(gè)正方形在⊙O直徑的同側(cè),頂點(diǎn)BC、GH都在⊙O的直徑上,正方形ABCD的頂點(diǎn)A在⊙O上,頂點(diǎn)DPC上,正方形EFGH的頂點(diǎn)E在⊙O上、頂點(diǎn)FQG上,正方形PCGQ的頂點(diǎn)P也在⊙O上.若BC=1,GH=2,則CG的長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=120°,B=D=90°,在BC,CD上分別找一點(diǎn)M,N,使AMN周長(zhǎng)最小時(shí),則∠AMN+ANM的度數(shù)是________

查看答案和解析>>

同步練習(xí)冊(cè)答案