分析 由E、F是?ABCD的對角線AC上的兩點(diǎn),且AE=CF,易證得△ABE≌△CDF(SAS),繼而可判定BE=DF,進(jìn)一步證出BE∥DF.
解答 解:(1)BE∥DF;∴∠AEB=∠CFD,∴∠BEF=∠DFE,∴BE∥DF
故答案為:BE∥DF;
(2)BE=DF.
故答案為:BE=DF;
(3)①選BE=DF;理由:
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∴∠BAE=∠DCF,
在△ABE和△CDF中,$\left\{\begin{array}{l}{AE=CF}&{\;}\\{∠BAE=∠DCF}&{\;}\\{AB=CD}&{\;}\end{array}\right.$,
∴△ABE≌△CDF(SAS),
∴BE=DF.②選BE∥DF;理由:
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∴∠BAE=∠DCF,
在△ABE和△CDF中,$\left\{\begin{array}{l}{AE=CF}&{\;}\\{∠BAE=∠DCF}&{\;}\\{AB=CD}&{\;}\end{array}\right.$,
∴△ABE≌△CDF(SAS),
∴∠AEB=∠CFD,
∴∠BEF=∠DFE,
∴BE∥DF.
點(diǎn)評 此題考查了平行四邊形的性質(zhì)以及全等三角形的判定與性質(zhì).注意證得△ABE≌△CDF是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 16米 | B. | 15米 | C. | 14米 | D. | 12米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com