【題目】下列說法中,正確的是( )
A. =±5
B. =﹣3
C.± =±6
D. =﹣10
【答案】C
【解析】解:A、 =5,故原題計算錯誤;
B、 =3,故原題計算錯誤;
C、 =±6,故原題計算正確;
D、 ,不能開平方,故原題計算錯誤;
所以答案是:C.
【考點精析】本題主要考查了二次根式的性質(zhì)與化簡和平方根的基礎(chǔ)的相關(guān)知識點,需要掌握1、如果被開方數(shù)是分?jǐn)?shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化進(jìn)行化簡.2、如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來;如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(或二次方跟);一個數(shù)有兩個平方根,他們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=Rt∠,以BC為直徑的⊙O交AB于點D,切線DE交AC于點E.
(1)求證:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形中,AB=30cm,BC=60cm.點從點出發(fā),沿路線向點勻速運動,到達(dá)點后停止;點從點出發(fā),沿路線向點勻速運動,到達(dá)點后停止.若點同時出發(fā),在運動過程中,點停留了,圖②是兩點在折線上相距的路程S(cm)與時間(s)之間的部分函數(shù)關(guān)系圖象.求:
(1)P、Q兩點的運動速度及P到C點的時間;
(2)設(shè)的面積為,求與之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如下的表格,
實驗次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 2000 |
頻率 | 0.365 | 0.328 | 0.330 | 0.334 | 0.336 | 0.332 | 0.333 |
則符合這一結(jié)果的實驗最有可能的是( )
A.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是梅花
B.拋一枚硬幣,出現(xiàn)反面的概率
C.袋子里有除了顏色都一樣3個紅球,2個白球,隨機摸一個球是白球的概率
D.拋一個質(zhì)地均勻的正六面體骰子,向上的面點數(shù)大于4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①是一個長為2m.寬為2n的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖②形狀拼成一個正方形.
(1)你認(rèn)為圖②中的陰影部分的正方形的邊長等于________?
(2)請用兩種不同的方法求圖②中陰影部分的面積.(不用化簡)
方法1:___________;方法2:___________.
(3)由問題(2)你能寫出三個代數(shù)式:,,mn之間的一個等量關(guān)系.
答:______________.
(4)根據(jù)(3)題中的等量關(guān)系和完全平方公式,解決如下問題:
①已知:m+n=5,mn=-3,求:(m﹣n)2的值;
②已知m-n=5,,求mn的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠CAB=30°,以線段AB為邊向外作等邊△ABD,點E是線段AB的中點,連接CE并延長交線段AD于點F.
(1)求證:四邊形BCFD為平行四邊形;
(2)若AB=6,求平行四邊形BCFD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:y=y1+y2 , y1與x成正比例,y2與x成反比例,當(dāng)x=2時,y=﹣4;當(dāng)x=﹣1時,y=5,求y與x的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示,若△ABC內(nèi)一點P滿足∠PAC=∠PBA=∠PCB,則點P為△ABC的布洛卡點.三角形的布洛卡點(Brocard point)是法國數(shù)學(xué)家和數(shù)學(xué)教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當(dāng)時的人們所注意,1875年,布洛卡點被一個數(shù)學(xué)愛好者法國軍官布洛卡(Brocard 1845﹣1922)重新發(fā)現(xiàn),并用他的名字命名.問題:已知在等腰直角三角形DEF中,∠EDF=90°,若點Q為△DEF的布洛卡點,DQ=1,則EQ+FQ=( )
A.5
B.4
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com