【題目】如圖,拋物線與軸交于兩點,直線經(jīng)過點,與拋物線的另一個交點為點,點的橫坐標(biāo)為3,線段在線段上移動,=1,分別過點作軸的垂線,交拋物線于,交直線于.
(1)求拋物線的解析式;
(2)當(dāng)四邊形DEFG為平行四邊形時,求出此時點P,Q的坐標(biāo);
(3)在線段PQ的移動過程中,以D,E,F,G為頂點的四邊形面積是否有最大值,若有求出最大值,若沒有請說明理由.
【答案】(1)y=-x2+x+2;(2)P(,0),Q(,0);(3)x=時,面積有最大值.
【解析】
(1)由點C的橫坐標(biāo)為3,代入直線y=x+,可得點C的坐標(biāo)為(3,2),再把點C(3,2)代入拋物線,可求得a的值,進而得出拋物線的解析式;
(2)設(shè)點P(m,0),Q(m+1,0),可得點D(m, m+)m,E(m,),G(m+1,m+1),F(m+1,),當(dāng)四邊形DEFG為平行四邊形時,有ED=FG,可列出關(guān)于m的方程,解方程求得m的值,即可得出點P、Q的坐標(biāo);
(3)設(shè)以D、E、F、G為頂點的四邊形面積為S,由(2)可得,S=×1÷2=(﹣m2+m+)=,根據(jù)二次函數(shù)圖象的性質(zhì)即可得出以D、E、F、G為頂點的四邊形面積的最大值.
(1)∵點C的橫坐標(biāo)為3,
∴y=×3+=2,
∴點C的坐標(biāo)為(3,2),
把點C(3,2)代入拋物線,可得2=9a﹣9a﹣4a,
解得:a=-,
∴拋物線的解析式為y=;
(2)設(shè)點P(m,0),Q(m+1,0),
由題意,點D(m,m+)m,E(m,),G(m+1,m+1),F(m+1,),
∵四邊形DEFG為平行四邊形,
∴ED=FG,
∴,即
=,
∴m=0.5,
∴P(0.5,0)、Q(1.5,0);
(3)設(shè)以D、E、F、G為頂點的四邊形面積為S,
由(2)可得,S=,
∴當(dāng)m=時,S最大值為,
∴以D、E、F、G為頂點的四邊形面積有最大值,最大值為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】華為瓦特實驗室試驗一種新型快充電池,充電時電池的電量是充電時間(分的一次函數(shù),其中.已知充電前電量為,測得充電10分鐘后電量達(dá)到,充滿電后手機馬上開始連續(xù)工作,工作階段電池電盤是工作時間的二次函數(shù),如圖所示,是該二次函數(shù)頂點,又測得充滿電后連續(xù)工作了40分鐘,這時電量降為,廠商規(guī)定手機充電時不能工作,電量小于時手機部分功能將被限制,不能正常工作.
(1)求充電時和充電后使用階段關(guān)于的函數(shù)表達(dá)式(不用寫出取值范圍);
(2)為獲得更多實驗數(shù)據(jù),實驗室計劃在首次充滿電并使用40分鐘后停止工作再次充電,充電6分鐘后再次工作,假定所有的實驗條件不變請問第二次工作的時間多長(電量到就停止工作)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,P是BA延長線上一點,PC切⊙O于點C,CG是⊙O的弦,CG⊥AB,垂足為D.
(1)求證:∠PCA=∠ABC.
(2)過點A作AE∥PC交⊙O于點E,交CD于點F,連接BE,若cos∠P=,CF=10,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, ,將直角三角板的直角頂點與邊的中點重合,直角三角板繞著點旋轉(zhuǎn),兩條直角邊分別交邊于,則的最小值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮和小黃同學(xué)在實驗室中調(diào)制體積相同但濃度不同的化學(xué)反應(yīng)試劑溶液,已知小亮和小黃調(diào)制的溶液濃度分別為、.現(xiàn)將小亮調(diào)制的溶液的倒入小黃調(diào)制的溶液中,混合均勻后再由小黃調(diào)制的溶液倒回小亮調(diào)制的溶液使其體積恢復(fù)到原體積,則互摻后小亮、小黃調(diào)制的溶液含純量的差與互摻前小亮、小黃調(diào)制的溶液含純量的差之比為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,給出如下定義:已知點,點,連接.如果線段上有一個點與點的距離不大于1,那么稱點是線段的“環(huán)繞點”.已知上有一點是線段的“環(huán)繞點”,且點,則的半徑的取值范圍是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,,點D在邊AB上,且,動點P從點A出發(fā),以每秒1個單位長度的速度向終點B運動,以PD為邊向上做正方形,設(shè)點P運動的時間為秒,正方形與重疊部分的面積為.
(1)用含有的代數(shù)式表示線段的長.
(2)當(dāng)點落在的邊上時,求的值.
(3)求與的函數(shù)關(guān)系式.
(4)當(dāng)點P在線段AD上運動時,做點N關(guān)于CD的對稱點,當(dāng)與的某一個頂點的連線平分的面積時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐
動手實踐:數(shù)學(xué)課上老師讓學(xué)生們折矩形紙片下面幾幅圖是學(xué)生們折出的一部分圖形(沿直線折疊)由于折痕所在的直線不同,折出的圖形也不同,各個圖形中所“隱含的”基本圖形也不同.我們可以通過發(fā)現(xiàn)基本圖形研究這些圖形中幾何問題.
問題解決:(1)如圖1,將矩形紙片沿直線折疊,使得點與點重合,點落在點的位置,連接,,,線段交于點,則與的關(guān)系為 ,線段與線段的關(guān)系為 .
小強量得,則 .
小麗說:“四邊形是菱形”,請你幫她證明.
拓展延伸:(2)如圖2,矩形紙片中,,,小明將矩形紙片沿直線折疊,點落在點的位置,交于點,請你直接寫出線段的長: .
綜合探究:(3)如圖3,是一張矩形紙片,,.在矩形的邊上取一點,在上取一點,將紙片沿折疊,使線段與線段交于點,得到.請你確定面積的取值范圍 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com